[1]Hohenberg P H. Kohn Inhomogeneous Electron Gas. Phys. Rev., 1964, 136: B864.
[2]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A):A1133-A1138.
[3]Van Schilfgaarde M , Kotani T, Faleev S. Quasiparticle self-consistent GW theory. Physical Review Letters, 2006, 96(22):226402.
[4]Onida G, Reining L, Rubio A. Electronic excitations: Density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. , 2002, 74 :601.
[5]Surh M P, Northrup J E, Louie S G. Occupied quasiparticle bandwidth of potassium. Physical Review B, 1988, 38(9):5976.
[6]Koelling D D. Self-consistent energy band calculations. Reports on Progress in Physics, 1981, 44(2):140.
[7]Aryasetiawany F, Gunnarssonz O. The GW method.Rep. Prog. Phys., 1998, 61:237.
[8]Hedin L. New method for calculating the one-particle green’s function with application to the electron-gas problem. Physical Review, 1965, 139:A796.
[9]Aulbur W G, J?nsson L, Wilkins J W. Quasiparticle Calculations in Solids //Solid State Physics: Advances in Research and Applications.San Diego: Academic Press, 2000: 1-218.
[10]Rohlüng M, Krüger P, Pollmann J. Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets. Physical Review B, 1993, 48(24):17791- 17805.
[11]Hybertsen M S, Louie S G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Physical Review B (Condensed Matter), 1986, 34(8):5390.
[12]Hott R. GW-approximation energies and Hartree-Fock bands of semiconductors. Physical Review B (Condensed Matter), 1991, 44(3):1057-1065.
[13]Hybertsen M S, Louie S G. Model dielectric matrices for quasiparticle self-energy calculations.Physical Review B (Condensed Matter), 1988, 37(5):2733-2736.
[14]Li X Z, Gómezabal R, Jiang H, et al. Impact of widely used approximations to the G0W0 method: An all-electron perspective. New Journal of Physics, 2012, 14(4):23006-23026(21).
[15]Broido M M, Taylor J G. Bethe‐salpeter equation. Journal of Mathematical Physics, 1969, 10(1):184-209.
[16]Cammi R, Mennucci B, Tomasi J J. Fast evaluation of geometries and properties of excited molecules in solution: A tamm-dancoff model with application to 4-dimethylaminobenzonitrile. Journal of Physical Chemistry A, 2000, 104(23):5631-5637.
[17]Deslippe J, Samsonidze G, Strubbe D A, et al. Berkeley GW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Computer Physics Communications, 2012, 183(6):1269-1289.
[18]Katsnelson M I, Irkhin V Y, Chioncel L, et al. Half-metallic ferromagnets: From band structure to many-body effects. Review of Modern Physics, 2008, 80(2): 315.
[19]Basov D N, Averitt R D, van Der Marel D, et al. Electrodynamics of correlated electron materials. Review of Modern Physics, 2011, 83(2): 471.
[20]Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids. Review of Modern Physics, 2014, 86(1):253-305.
[21]Runge E, Gross E K U. Density-Functional theory for time-dependent systems. Phys. Rev. Lett. , 1984, 52:997.
[22]Ren J, Kaxiras E, Meng S. Optical properties of clusters and molecules from real-time time- dependent density functional theory using a self-consistent feld. Molecular Physics, 2010, 108(14):1829-1844.
[23]Meng S, Kaxiras E. Electron and hole dynamics in dye-sensitized solar cells: Influencing
factors and systematic trends. Nano Letters, 2010, 10(4):1238-1247.
[24]Born M, Oppenheimer R.Quantum theory of molecules. Ann. Phys. , 1927, 389:457.
[25]Feynman R P. Space-time approach to quantum electrodynamics. Physical Review, 1949, 76(6):769-789.
[26]Feynman R P, Hibbs A R. Quantum Mechanics and Path Integrals. New York: McGraw-Hill Inc, 1965, 91:1291-1301.
[27]Feynman R P. Atomic Theory of the Transition in Helium. Physical Review, 1953, 91(6):1291-1301.
[28]Li X Z, Wang E G. Computer Simulations of Molecules and Condensed Matters: from Electronic Structures to Molecular Dynamics. Beijing:Peking University Press, 2014.
[29]Chandler D, Wolynes P G. Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. Journal of Chemical Physics, 1981, 74(7):4078.
[30]Berne J B, Thirumalai D. On the simulation of quantum systems: Path integral methods. Annual Review of Physical Chemistry, 1986, 37(1):401-424.
[31]Ceperley D M. Path integrals in the theory of condensed helium. Reviews of Modern Physics, 1995, 67(2):279-355.
[32]Pollock E L, Ceperley D M. Path-integral computation of superfluid densities. Physical Review B (Condensed Matter), 1987, 36(16):8343.
[33]Tuckerman M E, Marx D, Klein M L, et al. Efficient and general algorithms for path integral
Car-Parrinello molecular dynamics. Journal of Chemical Physics, 1996, 104(14):5579-5588.
[34]Marx D, Parrinello M. Ab initio path integral molecular dynamics: Basic ideas.J. Chem. Phys, 1996, 104:4077.
[35]Tuckerman M E, Marx D, Parrinello M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature, 2002, 417:925.
[36]Li X Z, Probert M I, Alavi A, et al. Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. Physical Review Letters, 2010, 104(6):066102.
[37]Morales M A, Pierleoni C, Schwegler E, et al. Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29):12799-12803.
[38]Ceriotti M, Bussi G, Parrinello M. Nuclear quantum effects in solids using a colored-noise thermostat.Physical Review Letters, 2009, 103(3):030603.
[39]Porezag D, Frauenheim T, K?hler T, et al. Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Physical Review B (Condensed Matter), 1995, 51(19):12947-12957.
[40]Slater J C, Koster G F. Simplified LCAO Method for the Periodic Potential Problem. Physical Review, 1954, 94(6):1498.
[41]Koskinen P, H,kkinen H, Seifert G, et al. Density-functional based tight-binding study of small gold clusters. New Journal of Physics, 2006, 8(40):6456-6460.
[42]K?hler C, Seifert G, Frauenheim T. Density functional based calculations for Fe n ( n ≤ 32).
Chemical Physics, 2005, 309(1):23-31.
[43]Th.Frauenheim, Weich F, Th.Kohler, et al. Density-functional-based construction of transferable nonorthogonal tight-binding potentials for Si and SiH. Phys.Rev.B, 1995, 52:11492.
[44]Guishan Zheng , H A W, Bobadovaparvanova P, et al. Parameter calibration of transition- metal elements for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method: Sc, Ti, Fe, Co, and Ni. Journal of Chemical Theory & Computation, 2007, 3(4):1349-1367.
[45]Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight- binding method for simulations of complex materials properties. Phys. Rev. B, 1998, 58:7260.
[46]K?hler C, Frauenheim T, Hourahine B, et al. Treatment of collinear and noncollinear electron spin within an approximate density functional based method. Journal of Physical Chemistry A, 2007, 111(26):5622-5629.
[47]Haugk M, Elsner J, Th F, et al. Structures, energetics and electronic properties of complex
III-V semiconductor systems. Physica Status Solidi, 2000, 217(1):473-511.
[48]Kohler C, Seifert G, Gerstmann U, et al. Approximate density-functional calculations of spin densities in large molecular systems and complex solids. Physical Chemistry Chemical Physics, 2001, 3(23):5109-5114.
[49]Niehaus T A, Suhai S, Sala F D, et al. Tight-binding approach to time-dependent density- functional response theory. Physical Review B, 2001, 63(8):247-250.
[50]Niehaus T A, Rohlfing M, Della S F, et al. Quasiparticle energies for large molecules: A tight-binding-based Green’s-function approach. Physical Review A, 2005, 71(2):2508.
[51]Pecchia A, Carlo A D. Atomistic theory of transport in organic and inorganic nanostructures. Reports on Progress in Physics, 2004, 67(8):1497-1561.
[52]Elstner M, Hobza P, Frauenheim T, et al. Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment. Journal of Chemical Physics, 2001, 114(12):5149-5155.
[53]Thouless D, Kohmoto M, Nightingale M, et al. Quantized hall conductance in a two- dimensional periodic potential. Phys. Rev. Lett. , 1982, 49:405.
[54]Haldane F D M. Model for a quantum hall effect without Landau levels: condensed-matter realization of the“parity anomaly”. Physical Review Letters, 1988, 61: 2015.
[55]Jackiw R. Fractional charge and zero modes for planar systems in a magnetic field. Phys.
Rev. D, 1984, 27: 2375.
[56]Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22):226801.
[57]Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect. Physical Review Letters, 2005, 95(14):146802.
[58]Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314(5806):1757-1761.
[59]Liu C, Hughes T L, Qi X L, et al. Quantum spin Hall effect in inverted type-Ⅱ
semiconductors. Physical Review Letters, 2008, 100(23):236601.
[60]Du L, Knez I, Sullivan G. Robust Helical Edge Transport in Gated InAs/GaSb Bilayers. Phys. Rev. Lett. , 2005, 114: 096802.
[61]Miao M S, Yan Q, Lou W K, et al. Polarization-driven topological insulator transition in a GaN/InN/GaN quantum well. Physical Review Letters, 2012, 109(18): 186803.
[62]Zhou L, Dimakis E, Hathwar R, et al. Measurement and effects of polarization fields on one-
monolayer-thick InN/GaN multiple quantum wells. Physical Review B, 2013, 88:125310.
[63]Chadov S, Qi X, Kübler J, et al. Tunable multifunctional topological insulators in ternary
Heusler compounds. Nature Materials, 2010, 9(7):541-545.
[64]Dzero M, Sun K, Galitski V, et al. Topological kondo insulators. Physical Review Letters, 2010, 104(10):2909-2915.
[65]Qi X L, Hughes T L, Zhang S C. Topological invariants for the Fermi surface of a time- reversal-invariant superconductor. Physical Review B (Condensed Matter), 2010, 81(13):134508.
[66]Aidelsburger M, Atala M, Lohse M, et al. Realization of the hofstadter hamiltonian with ultracold atoms in optical lattices. Physical Review Letters, 2013, 111(18):185301.
[67]Hafezi M, Demler E A, Lukin M D, et al. Robust optical delay lines with topological protection. Nature Physics, 2012, 7(11):907-912.
[68]Haldane F , Raghu S. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. ,2008, 100: 013904; Wang Z, Chong Y, Joannopoulos J D,et al, Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 2009, 461: 772.
[69]Rechtsman M C, Zeuner J M, Tünnermann A, et al. Strain-induced pseudomagnetic field and
photonic Landau levels in dielectric structures. Nature Photonics, 2013, 7(2):153-158.
[70]Fang K, Yu Z, Fan S. Realizing effective magnetic field for photons by controlling the phase
of dynamic modulation. Nature Photonics, 2012, 6(11):782-787.
[71]Hafezi M, Rabl P. Optomechanically induced non-reciprocity in microring resonators. Optics Express, 2012, 20(7):7672-7684.
[72]Umucalilar R, Carusotto I.Artificial gauge field for photons in coupled cavity arrays. Phys.
Rev. A, 2011, 84: 043804.
[73]Khanikaev A B, Mousavi S H, Tse W K, et al. Photonic topological insulators. Nat. Mater. , 2013, 12: 233.
[74]Bernevig B, Zhang S C.Quantum spin hall effect. Phys. Rev. Lett. , 2006, 96: 106802.
[75]Hafezi M, Mittal S, Fan J, et al. Imaging topological edge states in silicon photonics. Nat. Photon. , 2013, 7: 1001.
[76]Rechtsman M, Zeuner J, Plotnik Y, et al. Photonic topological insulators. Nature Materials, 2013, 12(3):233-239.
[77]Yoshida S, Misawa S, Gonda S. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates. Applied Physics Letters, 1983, 42(5):427-429.
[78]Amano H, Sawaki N, Akasaki I. Metalorganic vapor phase epitaxial growth of a high quality
GaN film using an AIN buffer layer. Applied Physics Letters, 1986, 48(5):353-355.
[79]Asif Khan M, Van Hove J M, Kuznia J N, et al. High electron mobility GaN/AlxGa1-xN heterostructures grown by low‐pressure metalorganic chemical vapor deposition. Applied Physics Letters, 1991, 58(21):2408-2410.
[80]Ohtomo A, Hwang H Y. Corrigendum: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 2004, 441(6973):423.
[81]Brinkman A, Huijben M, Zalk M V, et al. Magnetic effects at the interface between non- magnetic oxides. Nature Materials, 2007, 6(7):493-496.
[82]Reyren N, Thiel S, Caviglia A D, et al. Superconducting interfaces between insulating oxides. Science, 2007, 317(5842):1196-1199.
[83]Hwang H Y. Emergent phenomena at oxide interfaces. Nature Materials, 2012, 11(2):103- 113.
[84]Yoshikawa A, Che S B, Yamaguchi W, et al. Proposal and achievement of novel structure InN ∕ GaN multiple quantum wells consisting of 1 mL and fractional monolayer InN wells inserted in GaN matrix. Applied Physics Letters, 2007, 90(7):481.
[85]Miao M S, Yan Q, Lou W K, et al. Polarization-Driven Topological Insulator Transition in a GaN/InN/GaN Quantum Well. Physical Review Letters, 2012, 109(18):186803.
[86]Zhou L, Dimakis E, Hathwar R, et al. Measurement and effects of polarization fields on one-
monolayer-thick InN/GaN multiple quantum wells. Physical Review B, 2013, 88: 125310.
[87]Pan W, Dimakis E, Wang G T, et al. Two-dimensional electron gas in monolayer InN quantum wells.Appl. Phys. Lett., 2014, 105:213503.
[88]Zhang D, Lou W, Miao M, et al. Interface-induced topological insulator transition in GaAs/ Ge/GaAs quantum wells. Physical Review Letters, 2013, 111(15):156402.
[89]Zhang D, Zhang D B, Yang F, et al. Electronic and magneto-optical properties of monolayer phosphorene quantum dots. 2D Materials, 2015, 2:041001.
[90]Zhang H, Xu Y, Wang J, et al. Quantum spin hall and quantum anomalous hall states realized in junction quantum wells. Physical Review Letters, 2014, 112(21):216803.
[91]Zhang H, Wang J, Xu G, et al. Topological states in ferromagnetic CdO/EuO superlattices and quantum wells. Physical Review Letters, 2014, 112(9):096804.
[92]Liu Q , Zhang X, Abdalla L B, et al., Transforming common Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor
compounds into topological heterostructures: The case of CdTe/InSb superlattices. Advanced Functional Materials, 2016, 26(19): 3259-3267.
[93]Liu Q, Zhang X, Abdalla L B, et al. Switching a normal insulator into a topological insulator
via electric field with application to phosphorene. Nano Letters, 2015, 15(2):1222.
[94]Bansil A, Lin H, Das T. Colloquium: Topological band theory. Reviews of Modern Physics, 2016, 88(2):021004.
[95]Ren Y, Qiao Z, Niu Q. Topological phases in two-dimensional materials: a review. Reports on Progress in Physics Physical Society, 2016, 79(6):066501.
[96]Gottlieb A D, Mauser N J. New measure of electron correlation. Physical Review Letters, 2005, 95(12):123003.
[97]Constantin L A, Fabiano E, Laricchia S, et al. Semiclassical neutral atom as a reference system in density functional theory. Physical Review Letters, 2011, 106(18):186406.
[98]Louis-Franfiois A, Alejandro L, O Anatole von L, et al.Machine learning for many-body physics: The case of the Anderson impurity model. Physical Review B, 2014, 90:155136.
[99]Lee J, Seko A, Shitara K, et al. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Physical Review B, 2016, 93(11):115104.
[100]Pilania G, Mannodikanakkithodi A, Uberuaga B P, et al. Machine learning bandgaps of
double perovskites. Scientific Reports, 2016, 6:19375.