[1]Fermi E. Tentativo di una teoria dellj emissione dei raggi beta. Ric. Sci., 1933, 4: 491-495.
[2]Fermi E. Trends to a theory of beta radiation. Nuovo Cim., 1934, 11: 1-19.
[3]Fermi E. An attempt of a theory of beta radiation. 1. Z. Phys., 1934, 88: 161-177.
[4]Goeppert-Mayer M. Double beta-disintegration. Phys. Rev., 1935, 48: 512-516.
[5]Elliott S R, Hahn A A, Moe M K. Direct evidence for two-neutrino double-beta decay in 82Se. Phys. Rev. Lett., 1987, 59: 2020-2023.
[6]Majorana E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cim., 1937, 14: 171-184.
[7]Racah G. On the symmetry of particle and antiparticle. Nuovo Cim., 1937, 14: 322-328.
[8]Furry W H. On transition probabilities in double beta-disintegration. Phys. Rev., 1939, 56: 1184-1193.
[9]Schechter J, Valle J W F. Neutrinoless double-β decay in SU(2)xU(1) theories. Phys. Rev. D, 1982, 25: 2951-2954.
[10]Wang M, Audi G, Wapstra A H, et al. The AME2012 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C, 2012, 36: 1603-2014.
[11]Dolinski M J, Poon A W P, Rodejohann W. Neutrinoless double-beta decay: Status and prospects. [arXiv: 1902.04097 [nucl-ex]].
[12]Berglund M, Wieser M E. Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl. Chem., 2011, 83: 397-410.
[13]Tanabashi M, et al. Review of particle physics. Phys. Rev. D, 2018, 98: 030001.
[14]Barabash A S. Average and recommended half-life values for two-neutrino double beta decay. Nucl. Phys. A, 2015, 935: 52-64.
[15]Agostini M, et al. Improved limit on neutrinoless double-β decay of 76Ge from GERDA phase Ⅱ. Phys. Rev. Lett., 2018, 120: 132503.
[16]Alvis S I, et al. A search for neutrinoless double-beta decay in 76Ge with 26 kg-yr of exposure from the Majorana Demonstrator. Phys. Rev. C, 2019, 100, 025501
[17]Albert J B, Anton G, Badhrees I, et al. Search for neutrinoless double-beta decay with the upgraded EXO-200 detector. Phys. Rev. Lett., 2018, 120: 072701.
[18]Gando A, et al. Search for majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett., 2016, 117: 082503.
[19]Alduino C, et al. First results from CUORE: A search for lepton number violation via 0νββ decay of 130Te. Phys. Rev. Lett., 2018, 120: 132501.
[20]Chambers C, Walton T, Fairbank D, et al. Imaging individual barium atoms in solid xenon for barium tagging in nEXO. Nature, 2019, 569: 203-207.
[21]Engel J, Men′endez J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rept. Prog. Phys., 2017, 80: 046301.
[22]Minkowski P. μ →eγ at a rate of one out of 109 muon decays? Phys. Lett. B, 1977, 67: 421-428.
[23]Yanagida T. Horizontal symmetry and masses of neutrinos // Sawada O, SugamotoA. Proceedings of the Workshop on Uni?ed Theory and the Baryon Number of the Universe. Tsukuba: KEK, 1979: 95.
[24]Gell-Mann M, Ramond P, Slansky R. Complex spinors and Uni?ed Theories // van Nieuwenhuizen P, Freeman D Z. Supergravity eds. Amsterdam: North-Holland Publ. Co., 1979: 315.
[25]Glashow S L. The future of elementary particle physics. in Quarks and Leptons // Carg`ese, L′evy M, Basdevant J-L, Speiser D, Weyers J, Gastmans R, Jacob M. Quarks and Leptons. New York: Plenum. 1980: 687.
[26]Mohapatra R N, Senjanovic G. Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett., 1980, 44: 912-915.
[27]Fukugita M, Yanagida T. Baryogenesis without grand uni?cation. Phys. Lett. B, 1986, 174: 45-47.
[28]Wilczek F. Majorana returns. Nature Phys., 2009, 5: 614-618.
[29]Elliott S R, Franz M. Colloquium: Majorana fermions in nuclear, particle and solid-state physics. Rev. Mod. Phys., 2015, 87: 137.
[30]Wang D, Kong L Y, Fan P, et al. Evidence for Majorana bound states in an iron-based superconductor. Science, 2018, 362: 1797.
[31]Kusenko A. Sterile neutrinos: The dark side of the light fermions. Phys. Rept., 2009, 481: 1-28.
[32]Feng J L. Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys., 2010, 48: 495-545.
[33]Pontecorvo B. Mesonium and anti-mesonium. Sov. Phys. JETP, 1957, 6: 429.
[34]Pontecorvo B. Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP, 1968, 26: 984-988.
[35]Maki Z, Nakagawa M, Sakata S. Remarks on the uni?ed model of elementary particles. Prog. Theor. Phys., 1962, 28: 870-880.
[36]Abazajian K N, Acero M A, Agarwalla S K, et al. Light sterile neutrinos: A white paper. [arXiv: 1204.5379 [hep-ph]].
[37]Muto K, Bender E, Klapdor H V. Nuclear structure e?ects on the neutrinoless double beta decay. Z. Phys. A, 1989, 334: 187-194.
[38]Antusch S, Biggio C, Fernandez-Martinez E, et al. Unitarity of the leptonic mixing matrix. JHEP, 2006, 4(10): 883-898.
[39]Pas H, Hirsch M, Klapdor-Kleingrothaus H V, et al. Towards a superformula for neu- trinoless double beta decay. Phys. Lett. B, 1999, 453: 194-198.
[40]Pas H, Hirsch M, Klapdor-Kleingrothaus H V, Kovalenko S G. A superformula for neutrinoless double beta decay Ⅱ. The short range part. Phys. Lett. B, 2001, 498: 35-39.
[41]Blennow M, Fernandez-Martinez E, Lopez-Pavon J, et al. Neutrinoless double beta decay in seesaw models. JHEP, 2010, 7: 96.
[42]Faessler A, Gonzalez M, Kovalenko S, et al. Arbitrary mass Majorana neutrinos in neutrinoless double beta decay. Phys. Rev. D, 2014, 90: 096010.
[43]Barea J, Kotila J, Iachello F. Limits on sterile neutrino contributions to neutrinoless double beta decay. Phys. Rev. D, 2015, 92: 093001.
[44]Hyvarinen J, Suhonen J. Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange. Phys. Rev. C, 2015, 91: 024613.
[45]Horoi M, Neacsu A. Shell model predictions for 124Sn double-β decay. Phys. Rev. C, 2016, 93: 024308.
[46]Aguilar A, Auerbach L B, Burman R L, et al. Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam. Phys. Rev. D, 2001, 64: 112007.
[47]Mueller T A, Lhuillier D, Fallot M, et al. Improved predictions of reactor antineutrino spectra. Phys. Rev. C, 2011, 83: 054615.
[48]Mention G. et al., The Reactor Antineutrino Anomaly. Phys. Rev. D, 2011, 83:073006.
[49]Huber P. On the determination of anti-neutrino spectra from nuclear reactors. Phys. Rev C, 2011, 84: 024617.
[50]Giunti C, Lasserre T. eV-scale Sterile Neutrinos. Annual Review of Nuclear and Particle Science, 2019, 69(1).
[51]Xing Z Z. Low-energy limits on heavy Majorana neutrino masses from the neutrinoless double-beta decay and non-unitary neutrino mixing. Phys. Lett. B, 2009, 679: 255-259.
[52]Gouvea A, Jenkins J, Vasudevan N. Neutrino phenomenology of very low-energy seesaws. Phys. Rev. D, 2007, 75: 013003.
[53]Prezeau G, Ramsey-Musolf M, Vogel P. Neutrinoless double beta decay and e?ective ?eld theory. Phys. Rev. D, 2003, 68: 034016.
[54]Liao Y, Ma X D. Renormalization group evolution of dimension-seven baryon- and lepton-number-violating operators. JHEP, 2016, 11: 043.
[55]Liao Y, Ma X D. Operators up to dimension seven in standard model e?ective ?eld theory extended with sterile neutrinos. Phys. Rev. D, 2017, 96: 015012.
[56]Cirigliano V, Dekens W, De Vries J, et al. Neutrinoless double beta decay in chiral e?ective ?eld theory: Lepton number violation at dimension seven. JHEP, 2017, 12: 082.
[57]Graesser M L. An electroweak basis for neutrinoless double β decay. JHEP, 2017, 08: 099.
[58]Cirigliano V, Dekens W, De Vries J, et al. A neutrinoless double beta decay master formula from e?ective ?eld theory. JHEP, 2018, 12: 097.
[59]Liao Y, Ma X D. Renormalization group evolution of dimension-seven operators in standard model e?ective ?eld theory and relevant phenomenology. JHEP, 2019, 03: 179.
[60]Cirigliano V, Dekens W, De Vries J, et al. A renormalized approach to neutrinoless double-beta decay. [arXiv:1907.11254 [nucl-th]].
[61]Pati J C, Salam A. Lepton number as the fourth “color”. Phys. Rev. D, 1974, 10: 275-289.
[62]Mohapatra R N, Pati J C. “Natural” left-right symmetry. Phys. Rev. D, 1975, 11: 2558-2561.
[63]Senjanovic G, Mohapatra R N. Exact left-right symmetry and spontaneous violation of parity. Phys. Rev. D, 1975, 12: 1502-1505.
[64]Konetschny W, Kummer W. Nonconservation of total lepton number with scalar bosons. Phys. Lett. B, 1977, 70: 433-435.
[65]Magg M, Wetterich C. Neutrino mass problem and gauge hierarchy. Phys. Lett. B, 1980, 94: 61-64.
[66]Schechter J, Valle J W F. Neutrino masses in SU(2)xU(1) theories. Phys. Rev. D, 1980, 22: 2227-2235.
[67]Cheng T P, Li L F. Neutrino masses, mixings and oscillations in SU(2)xU(1) models of electroweak interactions. Phys. Rev. D, 1980, 22: 2860-2868.
[68]Lazarides G, Sha? Q, Wetterich C. Proton lifetime and fermion masses in an SO(10) model. Nucl. Phys. B, 1981, 181: 287-300.
[69]Mohapatra R N, Senjanovic G. Neutrino masses and mixings in gauge models with spontaneous parity violation. Phys. Rev. D, 1981, 23: 165-180.
[70]Mohapatra R N, Vergados J D. A new contribution to neutrinoless double beta decay in gauge models. Phys. Rev. Lett., 1981, 47: 1713-1716.
[71]Mohapatra R N. Limits on the mass of the right-handed Majorana neutrino. Phys. Rev. D, 1986, 34: 909-910.
[72]Retamosa J, Caurier E, Nowacki F. Neutrinoless double beta decay of Ca-48. Phys. Rev. C, 1995, 51: 371-378.
[73]Caurier E, Nowacki F, Poves A, Retamosa J. Shell model studies of the double beta decays of Ge-76, Se-82, and Xe-136. Phys. Rev. Lett., 1996, 77: 1954-1957.
[74]Stefanik D, Dvornicky R, Simkovic F, et al. Reexamining the light neutrino exchange mechanism of the 0νββ decay with left- and right-handed leptonic and hadronic currents. Phys. Rev. C, 2015, 92: 055502.
[75]Horoi M, Neacsu A. Analysis of mechanisms that could contribute to neutrinoless double-beta decay. Phys. Rev. D, 2016, 93: 113014.
[76]Haag R, Lopuszanski J, Sohnius M. All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B, 1975, 88: 257-274.
[77]Fayet P. Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B, 1976, 64: 159-162.
[78]Fayet P. Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B, 1977, 69: 489-494.
[79]Fayet P. Relations between the masses of the superpartners of leptons and quarks, the goldstino ouplings and the neutral currents. Phys. Lett. B, 1979, 84: 416-420.
[80]Farrar G R, Fayet P. Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B, 1978, 76: 575-579.
[81]Barbier R, Berat C, Besancon M, et al. R-parity violating supersymmetry. Phys. Rept., 2005, 420: 1-202.
[82]Mohapatra R N. New contributions to neutrinoless double beta decay in supersymmetric theories. Phys. Rev. D, 1986, 34: 3457-3461.
[83]Vergados J D. Neutrinoless double β-decay without Majorana neutrinos in supersym- metric theories. Phys. Lett. B, 1987, 184: 55-62.
[84]Hirsch M, Klapdor-Kleingrothaus H V, Kovalenko S G. Supersymmetry and neutrinoless double beta decay. Phys. Rev. D, 1996, 53: 1329-1348.
[85]Hirsch M, Valle J W F. Neutrinoless double beta decay in supersymmetry with bilinear R-parity breaking. Nucl. Phys. B, 1999, 557: 60-78.
[86]Babu K S, Mohapatra R N. New vector-scalar contributions to neutrinoless double beta decay and constraints on R-parity violation. Phys. Rev. Lett., 1995, 75: 2276-2279.
[87]Martin S P. A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys., 2010, 21: 1.
[88]Hirsch M, Klapdor-Kleingrothaus H V, Kovalenko S G. New constraints on R-parity broken supersymmetry from neutrinoless double beta decay. Phys. Rev. Lett., 1995, 75: 17-20.
[89]Hirsch M, Klapdor-Kleingrothaus H V, Panella O. Double beta decay in left-right sym- metric models. Phys. Lett. B, 1996, 374: 7-12.
[90]Horoi M. Shell model analysis of competing contributions to the double-β decay of 48Ca. Phys. Rev. C, 2013, 87: 667-677.
[91]Meroni A, Petcov S T, Simkovic F. Multiple CP non-conserving mechanisms of (ββ)0ν- decay and nuclei with largely di?erent nuclear matrix elements. JHEP, 2013, 2: 025.
[92]Vergados J D. Pion double charge exchange contribution to neutrinoless double beta decay. Phys. Rev. D, 1982, 25: 914.
[93]Faessler A, Kovalenko S, Simkovic F, et al. Dominance of pion exchange in R-parity violating supersymmetry contributions to neutrinoless double beta decay. Phys. Rev. Lett., 1997, 78: 183-186.
[94]Faessler A, Kovalenko S, Simkovic F. Pions in nuclei and manifestations of supersym- metry in neutrinoless double beta decay. Phys. Rev. D, 1998, 58: 115004.
[95]Giunti C, Kim C W. Fundamentals of Neutrino Physics and Astrophysics. Oxford: Oxford University Press, 2007.
[96]Duerr M, Lindner M, Merle A. On the quantitative impact of the Schechter-Valle theo- rem. JHEP, 2011.
[97]Liu J H, Zhang J, Zhou S. Majorana neutrino masses from neutrinoless double-beta decays and lepton-number-violating meson decays. Phys. Lett. B, 2016, 760: 571.
[98]Helo J C, Hirsch M, Ota T. Long-range contributions to double beta decay revisited. JHEP, 2016, 1606: 6.
[99]Fukuda Y, Hayakawa T, Ichihara E, et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 1998, 81: 1562.
[100]Ahmad Q R, Allen R C, Andersen T C, et al. Direct evidence for neutrino ?avor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett., 2002, 89: 011301.
[101]Eguchi K, et al. First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett, 2003, 90: 021802.
[102]Esteban I, Gonzalez-Garcia M C, Maltoni M, et al. Global analysis of three-?avour neutrino oscillations: Synergies and tensions in the determination of θ23, δCP, and the mass ordering. JHEP, 2019, 1901: 106.
[103]Capozzi F, Lisi E, Marrone A, et al. Current unknowns in the three-neutrino framework. Prog. Part. Nucl. Phys., 2018, 102: 48-72.
[104]de Salas P F, Forero D V, Ternes C A, et al. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B, 2018, 782: 633-640.
[105]An F P, Bal J Z, Balantekin A B, et al. Observation of electron-antineutrino disappear- ance at Daya Bay. Phys. Rev. Lett., 2012, 108: 171803.
[106]Aker M, Altenmu¨ller K, Arenz M, et al. An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN. [arXiv: 1909. 06048]
[107]Osipowicz A, et al. KATRIN: A Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of Intent. [arXiv: hep-ex/ 0109033]
[108]Hannestad S. Neutrino physics from precision cosmology. Prog. Part. Nucl. Phys., 2010, 65: 185-208.
[109]Aghanim N, et al. Planck 2018 results. VI. Cosmological parameters. [arXiv: 1807. 06209]
[110]Gando A, et al. Limit on neutrinoless ββ decay of 136Xe from the ?rst phase of KamLAND-Zen and comparison with the positive claim in 76Ge. Phys. Rev. Lett., 2013, 110: 062502.
[111]Agostini M, Allardt M, Andreotti E, et al. Results on neutrinoless double-β decay of
76Ge from phase i of the GERDA experiment. Phys. Rev. Lett., 2013, 111: 122503.
[112]Albert J B, et al. Search for Majorana neutrinos with the ?rst two years of EXO-200 data. Nature, 2014, 510: 229-234.
[113]Vissani F. Signal of neutrinoless double beta decay, neutrino spectrum and oscillation scenarios. JHEP, 1999, 9906: 022.
[114]Vergados J D, Ejiri H, Simkovic F. Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E, 2016, 25: 1630007.
[115]Xing Z Z, Zhao Z H, Zhou Y L. How to interpret a discovery or null result of the 0ν2β decay. Eur. Phys. J. C, 2015, 75: 423.
[116]Xing Z Z, Zhao Z H. The e?ective neutrino mass of neutrinoless double-beta decays: How possible to fall into a well. Eur. Phys. J. C, 2017, 77: 192.
[117]Cao J, Huang G Y, Li Y F, et al. Towards the meV limit of the e?ective neutrino mass in neutrinoless double-beta decays. Chin. Phys. C, 2020, 44(3): 031001.
[118]Rodejohann W. Neutrino-less double beta decay and particle physics. Int. J. Mod. Phys. E, 2011, 20: 1833-1930.
[119]Gariazzo S, Giunti C, Laveder M, et al. Updated global 3+1 analysis of short-baseline neutrino oscillations. JHEP, 2017, 1706: 135.
[120]Liu J H, Zhou S. Another look at the impact of an eV-mass sterile neutrino on the e?ective neutrino mass of neutrinoless double-beta decays. Int. J. Mod. Phys. A, 2018, 33: 1850014.
[121]Huang G Y, Zhou S. Impact of an eV-mass sterile neutrino on the neutrinoless double- beta decays: A bayesian analysis. [arXiv: 1902. 03839]
[122]Agostini M, Benato G, Detwiler J. Discovery probability of next-generation neutrinoless double-β decay experiments. Phys. Rev. D, 2017, 96: 053001.
[123]jt Hooft G. Symmetry breaking through bell-jackiw anomalies. Phys. Rev. Lett., 1976, 37: 8-11.
[124]jt Hooft G. Computation of the quantum e?ects due to a four-dimensional pseudopar- ticle. Phys. Rev. D, 1976, 14: 3432-3450.
[125]Georgi H, Glashow S. Unity of all elementary-particle forces. Phys. Rev. Lett., 1974, 32: 438-441.
[126]Minkowski P, Fritzsch H. Uni?ed interactions of leptons and hadrons. Annals Phys., 1975, 93: 193-266.
[127]Schechter J, Valle J W F. Neutrino-oscillation thought experiment. Phys. Rev. D, 1981, 23: 1666-1668.
[128]Li L F, Wilczek F. Physical processes involving Majorana neutrinos. Phys. Rev. D, 1982, 25: 143-148.
[129]Bernabeu J, Pascual P. CP properties of the leptonic sector for Majorana neutrinos. Nucl. Phys. B, 1983, 228: 21-30.
[130]Langacker P, Wang J. Neutrino anti-neutrino transitions. Phys. Rev. D, 1998, 58: 093004.
[131]de Gouvea A, Kayser B, Mohapatra R N. Manifest CP violation from Majorana phases. Phys. Rev. D, 2003, 67: 053004.
[132]Delepine D, Macias V G, Khalil S, et al. Probing Majorana neutrino CP phases and masses in neutrino-antineutrino conversion. Phys. Lett. B, 2010, 693: 438-442.
[133]Hirsch M, Kovalenko S, Schmidt I. Extended black box theorem for lepton number and ?avor violating processes. Phys. Lett. B, 2006, 642: 106-110.
[134]Xing Z Z, Zhao Z H. A review of μ-τ ?avor symmetry in neutrino physics. Rept. Prog. Phys., 2016, 79: 076201.
[135]Capozzi F, Fogli G L, Lisi E, et al. Status of three-neutrino oscillation parameters, circa 2013. Phys. Rev. D, 2014, 89: 093018.
[136]Chang C, Yodh G, Ehrlich R, et al. Search for double beta decay of k-meson. Phys. Rev. Lett., 1968, 20: 510-513.
[137]Elliott S R, Hahn A A, Moe M K. Direct evidence for two-neutrino double-beta decay in 82Se. Phys. Rev. Lett., 1987, 59: 2020-2023.
[138]Landau L. On the conservation laws for weak interactions. Nucl. Phys., 1957, 3: 127- 131.
[139]Lee T D, Yang C N. Parity nonconservation and a two component theory of the neutrino. Phys. Rev., 1957, 105: 1671-1675.
[140]Xing Z Z. Properties of CP violation in neutrino-antineutrino oscillations. Phys. Rev. D, 2013, 87: 111-130.
[141]Xing Z Z, Zhou Y L. Majorana CP-violating phases in neutrino-antineutrino oscillations and other lepton-number-violating processes. Phys. Rev. D, 2013, 88: 033002.
[142]Cai Y, Herrero-Garc′?a J, Schmidt M A, et al. From the trees to the forest: A review of radiative neutrino mass models. Front. in Phys., 2017, 5: 63.
[143]Xing Z Z, Zhou Y L. Majorana CP-violating phases in neutrino-antineutrino oscillations and other lepton-number-violating processes. Phys. Rev. D, 2013, 88: 033002.
[144]Han T, Mukhopadhyaya B, Si Z, et al. Pair production of doubly-charged scalars: Neutrino mass constraints and signals at the LHC. Phys. Rev. D, 2007, 76: 075013.
[145]Lesgourgues J, Pastor S. Massive neutrinos and cosmology. Phys. Rept., 2006, 429: 307-379.
[146]Weinberg S. Universal neutrino degeneracy. Phys. Rev., 1962, 128: 1457.
[147]Cocco A G, Mangano G, Messina M. Probing low energy neutrino backgrounds with neutrino capture on beta decaying nuclei. JCAP, 2007, 0706: 015.
[148]Li Y F. Detection prospects of the cosmic neutrino background. Int. J. Mod. Phys. A, 2015, 30: 1530031.
[149]Long A J, Lunardini C, Sabancilar E. Detecting non-relativistic cosmic neutrinos by capture on tritium: Phenomenology and physics potential. JCAP, 2014.
[150]Zhang J, Zhou S. Relic right-handed Dirac neutrinos and implications for detection of cosmic neutrino background. Nucl. Phys. B, 2016, 903: 211-225.
[151]Betti M G, et al. Neutrino physics with the PTOLEMY project: Active neutrino properties and the light sterile case. [arXiv: 1902.05508 [astro-ph.CO]].
[152]Giunti C, Studenikin A. Neutrino electromagnetic interactions: A window to new physics. Rev. Mod. Phys., 2015, 87: 531-591.
[153]Rodejohann W, Xu X J, Yaguna C E. Distinguishing between Dirac and Majorana neutrinos in the presence of general interactions. JHEP, 2017, 1705: 024.
[154]de Gouvea A, Shalgar S. E?ect of transition magnetic moments on collective supernova neutrino oscillations. JCAP, 2012, 1210: 27.
[155]de Gouvea A, Shalgar S. Transition magnetic moments and collective neutrino oscilla- tions: three-?avor e?ects and detectability. JCAP, 2013, 1304: 18.