logo
中国学科发展战略·未来作物品种设计

中国学科发展战略·未来作物品种设计

作为植物的繁殖器官,种子发育在植物的生命周期中起到至关重要的作用。种子为胚胎提供营养,能够在胁迫环境下进行休眠使植物更好地适应环境。此外,种子是人类赖以生存的粮食的最主要来源,为人类提供了 80% 的主粮,是粮食产量和品质形成的基础。因此,对种子形成与萌发调控机制的研究将为农作物的产量和品质提高提供理论基础和技术支撑。
本书预览点击购买
编辑委员会
主编:李家洋
编委:( 按姓氏汉语拼音排序 )
曹晓风  陈彩艳  陈晓亚  程祝宽  种康  储成才 邓兴旺 丁勇  丁兆军 傅向东  高彩霞  龚继明   郭岩 郭庆华 韩斌  韩方普 何光存 何祖华 黄三文 黄学辉  蒋才富焦雨铃 景海春 康振声 赖锦盛  李霞 李传友 李云海  廖红 林荣呈  刘巧泉 刘耀光 罗杰 漆小泉 孙其信   田志喜  万建民 王台 王国栋 王汉中  王永红 吴殿星 吴孔明 谢芳 熊立仲  徐国华 薛淮 薛红卫 薛勇彪 严建兵  杨淑华 张启发 赵剑峰 钟上威 周俭民  周雪平 朱新广 朱玉贤
编辑组成员:储成才  田志喜  王永红  于昕
我国是人口大国,粮食安全是事关国家长治久安的重大战略问题。习近平总书记指出,中国人的饭碗任何时候都要牢牢端在自己手上,我们的饭碗应该主要装中国粮,要下决心把民族种业搞上去,抓紧培育具有自主知识产权的优良品种,从源头上保障国家粮食安全。
育种技术的发展为保证粮食产量和安全做出了巨大贡献,其发展得益于遗传学、分子生物学和基因组学的发展。早期通过驯化选育农家品种,进程慢,效率低。随着遗传学的发展,20 世纪 30 年代通过遗传育种创制的杂交玉米开辟了农业革命;60 年代起,在全世界范围内以矮化育种为标志的“绿色革命”使小麦、水稻等作物产量大幅度提高;80 年代生物技术的发展促生了分子育种,使常规遗传育种有了一定的可跟踪性。但上述育种技术仍然不能满足日益增长的粮食需求,更加高效和精准的育种技术——“设计育种” 出现,即通过品种设计进行多基因的复杂性状的定向改良与聚合,从而达到粮食高产优质的目标。设计育种技术的突破将依赖于遗传学、分子生物学和基因组学等学科的发展,尤其要依赖于对高产优质等复杂性状形成的分子机制的阐明。我国农业基础研究历经几十年发展,在农业生物功能基因组学等基础研究领域取得了长足进步,相继完成了水稻、小麦、玉米、大豆、油菜、棉花等重要农作物全基因组测序,在主要农业生物重要性状形成的遗传解析与分子机制研究方面取得了重要进展,水稻功能基因研究处于国际领跑地位。
中国科学院战略性先导科技专项“分子模块设计育种创新体系”实施以来,针对我国粮食安全和战略性新兴产业发展的重大需求,以水稻为主、小麦等为辅,初步建立了从“分子模块”到“设计型品种”的现代生物技术育种创新体系。在中国科学院学部学科发展战略研究项目“未来作物设计的分子生物学基础”的资助下,我们邀请从事植物基础研究和应用基础研究领域的一线科学家进行战略研究,他们中间 80% 以上的成员参与国家重大科学研究计划、中国科学院战略性先导科技专项,具有深厚的研究基础和对相关领域的前瞻性把握。
本书首次提出未来作物概念,针对未来作物品种设计的需求,围绕植物基础科学与现代农业、现代农业与环境、现代农业与人类健康研究领域,重点对种子生物学、植物形态建成、光合和营养高效利用、植物环境适应等的分子基础解析,植物代谢调控机制、多倍体形成的分子机制、复杂多倍体作物功能基因解析、基因组编辑与基因表达调控等的新技术新方法等进行了国内外进展综述,论述了上述领域未来发展趋势与关键突破口,并提出了 2035 年和 2050 年阶段性未来作物战略目标,同时对研究政策保障和环境支持建议进行了战略研究。希望本书的出版对强化农业基础科技创新、驱动我国农业发展、保障粮食安全起到战略性指导作用。
在项目立项、调研、报告撰写和本书的组织出版过程中,战略规划研究组专家投入了大量的心力。借此机会,向所有参与《未来作物品种设计》撰写的专家和同仁表示衷心的感谢!
本书内容涉及领域广泛,相关研究领域发展迅速,遗漏和不妥之处在所难免,恳请读者指正。
 
中国科学院院士
2020年9月22日于北京
未来作物精准设计 / 韩斌  薛勇彪  >朱玉贤康振声 张启发
种子形成与萌发 / 邓兴旺  薛红卫 王台  钟上威  李云海
植物形态建成 / 焦雨铃  丁兆军  傅向东
生育期、育性与杂种优势 / 程祝宽  刘耀光
光合作用 / 朱新广  林荣呈
水资源利用效率与抗旱 / 熊立仲
养分资源高效利用 / 徐国华  廖红  陈彩艳  龚继明
生物固氮 / 谢芳  李霞
病虫害与抗性 / 何祖华  周俭民 周雪平  李传友  何光存
盐碱与极端温度适应 / 种康  杨淑华  郭岩  蒋才富
品质与营养 / 刘巧泉  吴殿星
特殊功用作物改良 / 罗杰  王国栋  漆小泉  陈晓亚
基因表达调控 / 丁勇  曹晓风
高通量表型技术 / 郭庆华
功能基因高效解析 / 赖锦盛  严建兵  黄学辉
基因组编辑 / 高彩霞
驯化与多倍体育种 / 黄三文  韩方普  王汉中
政策保障与环境支持 / 景海春  孙其信  吴孔明  万建民
彩图
Arc, E., Sechet, J., Corbineau, F., Rajjou, L., and Marion-Poll, A. (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 4, 63.
Batista, R.A., Figueiredo, D.D., Santos-Gonzalez, J., and Kohler, C. (2019). Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev. 33, 466-476.
Bentsink, L., and Koornneef, M. (2008). Seed dormancy and germination. Arabidopsis Book 6, e0119.
Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F.L., and Holdsworth, M.J. (2008). Seed after-ripening is a discrete developmental pathway associated with speci?c gene networks in Arabidopsis. Plant J. 53, 214-224.
Chang, G.X., Wang, C.T., Kong, X.X., Chen, Q., Yang, Y.P., and Hu, X.Y. (2018). AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 501, 232-238.
Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L., Wang, H., et al. (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2, 15195.
Cho, J.N., Ryu, J.Y., Jeong, Y.M., Park, J., Song, J.J., Amasino, R.M., Noh, B., and Noh, Y.S. (2012). Control of seed germination by light-induced histone arginine demethylation activity. Dev. Cell 22, 736-748.
Day, R.C., Herridge, R.P., Ambrose, B.A., and Macknight, R.C. (2008). Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol. 148, 1964-1984.
Doll, N.M., Royek, S., Fujita, S., Okuda, S., Chamot, S., Stintzi, A., Widiez, T., Hothorn, M., Schaller, A., Geldner, N., et al. (2020). A two-way molecular dialogue between embryo and endosperm is required for seed development. Science 367, 431-435.
Dong, H., Dumenil, J., Lu, F.H., Na, L., Vanhaeren, H., Naumann, C., Klecker, M., Prior, R., Smith, C., McKenzie, N., et al. (2017). Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatoryproteins to limit cell proliferation in Arabidopsis. Genes Dev. 31, 197-208.
Du, L., Li, N., Chen, L., Xu, Y., Li, Y., Zhang, Y., and Li, C. (2014). The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-speci?c protease UBP15/SOD2 in Arabidopsis. Plant Cell 26, 665-677.
Duan, P., Ni, S., Wang, J., Zhang, B., Xu, R., Wang, Y., Chen, H., Zhu, X., and Li, Y. (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat. Plants, 15203.
Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., and Zhang, Q. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164-1171.
Finkelstein, R., Reeves, W., Ariizumi, T., and Steber, C. (2008). Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 59, 387-415.
Gazzarrini, S., and Tsai, A.Y. (2015). Hormone cross-talk during seed germination. Essays Biochem. 58, 151-164.
Guo, G., Liu, X., Sun, F., Cao, J., Huo, N., Wuda, B., Xin, M., Hu, Z., Du, J., Xia, R., et al. (2018b). Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. Plant Cell 30, 796-814.
Guo, T., Chen, K., Dong, N.Q., Shi, C.L., Ye, W.W., Gao, J.P., Shan, J.X., and Lin, H.X. (2018a).
GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell 30, 871-888.
Holdsworth, M.J., Bentsink, L., and Soppe, W.J.J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 179, 33-54.
Hu, Y., Han, X., Yang, M., Zhang, M., Pan, J., and Yu, D. (2019). The transcription factor INDUCER OF CBF EXPRESSION1 interacts with ABSCISIC ACID INSENSITIVE5 and
DELLA proteins to ?ne-tune abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 31, 1520-1538.
Jiang, Z., Xu, G., Jing, Y., Tang, W., and Lin, R. (2016). Phytochrome B and REVEILLE1/2-
mediated signalling controls seed dormancy and germination in Arabidopsis. Nat. Commun.7, 12377.
Jiao, Y.,  Wang, Y.,  Xue, D., Wang,  J., Yan,  M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X.,   et al. (2010). Regulation of OsSPL14 by OsmiR156 de?nes ideal plant architecture in rice. Nat. Genet. 42, 541-544.
Kang, J., Yim, S., Choi, H., Kim, A., Lee, K.P., Lopez-Molina, L., Martinoia, E., and Lee, Y. (2015). Abscisic acid transporters cooperate to control seed germination. Nat. Commun. 6, 8113.
Li, N., and Li, Y. (2016). Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 33, 23-32.
Li, N., Xu, R., and Li, Y. (2019). Molecular networks of seed size control in plants. Annu. Rev.
Plant Biol. 70, 435-463.
Li, Y., Zheng, L., Corke, F., Smith, C., and Bevan, M.W. (2008). Control of ?nal seed and organ
size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22, 1331-1336.
Liu, X., Hu, P., Huang, M., Tang, Y., Li, Y., Li, L., and Hou, X. (2016). The NF-YC-RGL2
module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat. Commun. 7, 12768.
Ma, W., Guan, X., Li, J., Pan, R., Wang, L., Liu, F., Ma, H., Zhu, S., Hu, J., Ruan, Y.L., et al. (2019). Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proc. Natl. Acad. Sci. USA 116, 4716-4721.
Pen?eld, S., Josse, E.M., Kannangara, R., Gilday, A.D., Halliday, K.J., and Graham, I.A. (2005). Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr. Biol. 15, 1998-2006.
Shi, H., Wang, X., Mo, X., Tang, C., Zhong, S., and Deng, X.W. (2015). Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc. Natl. Acad. Sci. USA 112, 3817-3822.
Si, L., Chen, J., Huang, X., Gong, H., Luo, J., Hou, Q., Zhou, T., Lu, T., Zhu, J., Shangguan, Y., et al. (2016). OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48, 447-456.
Song, X.J., Huang, W., Shi, M., Zhu, M.Z., and Lin, H.X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39,623-630.
Sun, S., Wang, L., Mao, H., Shao, L., Li, X., Xiao, J., Ouyang, Y., and Zhang, Q. (2018). A G-protein pathway determines grain size in rice. Nat. Commun. 9, 851.
Topham, A.T., Taylor, R.E., Yan, D., Nambara, E., Johnston, I.G., and Bassel, G.W. (2017). Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds. Proc. Natl. Acad. Sci. USA 114, 6629-6634.
Vaistij, F.E., Barros-Galvao, T., Cole, A.F., Gilday, A.D., He, Z., Li, Y., Harvey, D., Larson, T.R., and Graham, I.A. (2018). MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 115, 8442-8447.
Wang, J.L., Tang, M.Q., Chen, S., Zheng, X.F., Mo, H.X., Li, S.J., Wang, Z., Zhu, K.M., Ding,
L.N., Liu, S.Y., et al. (2017). Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnol. J. 15, 1024-1033.
Wang, S., Li, S., Liu, Q., Wu, K., Zhang, J., Wang, S., Wang, Y.,  Chen, X., Zhang, Y.,  Gao,   C., et al. (2015a). The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47, 949-954.
Wang,  S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., Qian, Q.,  et al. (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950-954.
Wang, Y., Xiong, G., Hu, J., Jiang, L., Yu, H., Xu, J., Fang, Y., Zeng, L., Xu, E., Xu, J., et al. (2015b). Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, 944-948.
Wang, Z., Chen, F.,  Li, X., Cao, H., Ding, M., Zhang, C., Zuo, J., Xu, C., Xu, J., Deng, X.,       et al. (2016). Arabidopsis seed germination speed is controlled by SNL histone deacetylase- binding factor-mediated regulation of AUX1. Nat. Commun. 7, 13412.
Wu, J.J., Peng, X.B., Li, W.W., He, R., Xin, H.P., and Sun, M.X. (2012). Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling during the maturation of Arabidopsis female gametes. Dev. Cell 23, 1043-1058.
Xia, T.,  Li, N., Dumenil, J., Li, J., Kamenski, A., Bevan, M.W., Gao, F.,  and Li, Y.  (2013). The
ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organsize in Arabidopsis. Plant Cell 25, 3347-3359.
Xie, G., Li, Z., Ran, Q., Wang, H., and Zhang, J. (2017). Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnol. J. 16, 234-244.
Xu, R., Duan, P., Yu, H., Zhou, Z., Zhang, B., Wang, R., Li, J., Zhang, G., Zhuang, S., Lyu,  J.,  et al. (2018a). Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Mol. Plant 11, 860-873.
Xu, R., Yu, H., Wang, J., Duan, P., Zhang, B., Li, J., Li, Y., Xu, J., Lyu, J., Li, N., et al. (2018b).
A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. Plant J. 95, 937-946.
Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S. (2004). Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367-378.
Yan, A., and Chen, Z. (2017). The pivotal role of abscisic acid signaling during transition from seed maturation to germination. Plant Cell Rep. 36, 689-703.
Yin, L.L., and Xue, H.W. (2012). The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell 24, 1049- 1065.
Zhang, Y., Xiong, Y., Liu, R., Xue, H.W., and Yang, Z. (2019). The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proc. Natl. Acad. Sci. USA 116, 16121-16126.
Zheng, X., Li, Q., Li, C., An, D., Xiao, Q., Wang, W., and Wu, Y. (2019). Intra-kernel reallocation of proteins in maize depends on VP1-mediated scutellum development and nutrient assimilation. Plant Cell 31, 2613-2635.
Zuo, J., and Li, J. (2014). Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu. Rev. Genet. 48, 99-118.
暂无
新书推荐