logo
中国学科发展战略·太阳电池科学技术

中国学科发展战略·太阳电池科学技术

太阳电池科学技术是一门交叉学科,涉及物理学、电子科学与技术、化学、材料科学、工程科学技术、能源科学技术,同时又具有很强的应用性,与社会经济、国计民生紧密联系。 能源是经济社会发展的重要物质基础。当前的环境问题在很大程度上是由传统化石能源的巨大消费引起的。能源与环境问题归根结底是发展的问题。能源问题已经成为制约传统产业未来可持续发展的瓶颈。自第一次工业革命以来,煤炭、石油、天然气等化石能源迅速成为经济社会发展的支撑。但同时,这些传统能源的广泛利用造成了严重的环境问题,严重威胁着地球生物的生存环境。为了应对日益严重的能源危机,各国积极探寻新能源技术,特别是太阳能、风能、生物能等可再生能源,因其取之不尽、用之不竭、清洁环保的特点,受到世界各国的高度重视。我国现阶段的环境污染在一定程度上与以煤炭为主的能源结构有关。在中国现代化进程中,能源消耗带来了资源环境破坏的外部成本,应积极推动能源生产与利用方式变革,提高能源资源利用效率。能源系统、经济系统与环境系统存在密切的相互联系、相互影响、相互制约的发展关系。大力开发和利用清洁可再生能源是实现经济效益和环境效益共赢的有效举措。
本书预览点击购买
中国学科发展战略
联合领导小组
组长:丁仲礼 李静海
副组长:秦大河 韩宇
成员: 王恩哥 朱道本 陈宜瑜 傅伯杰 李树深 杨卫 汪克强 李婷 苏荣辉 王长锐 邹立尧 于晟 董国轩 陈拥军 冯雪莲 王岐东 黎明 张兆田 高自友 徐岩英
联合工作组
组长:苏荣辉 于晟
成员: 龚旭 孙粒 高阵雨 李鹏飞 钱莹洁 薛淮 冯霞 马新勇
中国学科发展战略 太阳电池科学技术
项目组
组长:褚君浩 李永舫
成员(以姓名笔画为序):刘剑 孙硕 孙琳 李树深 杨涛 杨平雄 杨德仁 沈宏 沈辉 张涛 张茂杰 陆书龙 陈时友 孟庆波 胡志高 查亚兵 骆军委 陶加华 黄维 薛春来
能源是经济社会发展的重要物质基础。能源问题已经成为制约传统产业未来可持续发展的瓶颈。能源系统、经济系统与环境系统存在密切的相互联系、相互影响、相互制约的发展关系。自第一次工业革命以来,煤炭、石油、天然气等化石能源快速发展,成为经济社会发展的支撑。但同时,这些传统能源的广泛利用也造成了严重的环境问题,威胁着地球生物的生存环境。太阳能等可再生能源,因其取之不尽、用之不竭、清洁环保的特点,受到世界各国的高度重视。大力开发利用清洁可再生能源是实现经济效益和环境效益共赢的有效举措。毫无疑问,太阳能技术是很有前途和潜力的可再生能源和清洁能源技术,其涉及材料、器件和系统等方面,是多学科交叉的前沿研究领域。基于此,从科学层面来分析太阳电池的理论基础、发展思路和趋势,同时总结当前该领域的最新进展是非常必要的,也是十分亟须的。
本书主要研究太阳能光伏发电技术的科学基础、学科框架和发展趋势,分析当前各类太阳电池能量转换技术的科学发展路径和科学原理制约,探讨各类太阳电池的发展趋势和关键技术,分析和预判太阳电池科学技术的发展形势,探索太阳电池科学技术发展的新思路,研究太阳电池产业发展的策略路径、产业布局及规划目标。同时,本书还讨论了第三次工业革命新构想——能源互联网建设问题。书中在政策层面提出了针对发展太阳电池科学技术和应用的若干建议。具体来讲,本书主要针对当前太阳电池科学技术的快速发展,从多学科(材料科学、物理学、电子科学与技术、工程科学技术等)入手,通过厘清太阳电池科学技术的发展规律和发展前景,并结合中国科学家在该领域取得的重要进展和突破,系统分析了它们的科学意义和学术价值。并且,项目组组长褚君浩院士和主要研究骨干还极参与我国太阳电池产业的相关决策咨询,建言献策,结合我国国情提出了促进太阳电池产业发展的财税金融政策、产业规划政策、科技创新政策、人才培养政策及市场环境建设政策等若干资助机制与政策建议。
本书主要由来自中国科学院上海技术物理研究所、中国科学院化学研究所、南京工业大学、国防科技大学、中山大学、浙江大学、华东师范大学、中国科学院半导体研究所、中国科学院苏州纳米技术与纳米仿生研究所、中国科学院合肥等离子体物理研究所、中国科学院物理研究所、苏州大学及华北电力大学等高校和科研院所的科学家参与撰写完成,具体分工如下:中国科学院上海技术物理研究所褚君浩、沈宏、孙硕撰写第一章;华东师范大学杨平雄、胡志高、孙琳、陈时友、陶加华撰写第二章;中国科学院上海技术物理研究所褚君浩、沈宏、孙硕,中国科学院化学研究所李永舫,南京工业大学黄维,中山大学沈辉,浙江大学杨德仁,华东师范大学杨平雄、胡志高、孙琳、陈时友、陶加华,中国科学院半导体研究所李树深、刘剑、杨涛、骆军委、薛春来,中国科学院苏州纳米技术与纳米仿生研究所陆书龙,中国科学院物理研究所孟庆波,苏州大学张茂杰,中国科学院合肥等离子体物理研究所及华北电力大学相关老师撰写第三章;国防科技大学张涛、查亚兵撰写第四章;中国科学院上海技术物理研究所褚君浩、沈宏、孙硕撰写第五章。褚君浩、胡志高负责统稿。
本书的出版得到中国科学院和国家自然科学基金委员会的学科发展战略研究项目的资助。
褚君浩
2019 年 1 月
总序
前言
摘要
Abstract
第一章 科学意义与战略价值
第一节 新能源应用的科学意义
第二节 新能源应用的战略价值
一、我国的能源情况
二、世界新能源开发情况
三、小结
第二章 发展规律与学科基础
第一节 太阳能光伏发电技术的发展历程
第二节 太阳电池的分类及学科基础
第三节 太阳能光伏发电系统
一、独立光伏发电系统 
二、并网光伏发电系统
三、分布式光伏发电系统
第三章 发展现状与发展态势
第一节 晶硅太阳电池
一、高纯硅原料提纯技术
二、晶硅生长技术
三、晶硅的切片
第二节 薄膜太阳电池
一、高效硅基薄膜四结叠层电池研究
二、高效碲化镉薄膜太阳电池及产业化研究
三、高效铜铟镓硒薄膜太阳电池研究
四、铜锌锡硫硒薄膜太阳电池的制备关键技术及界面特性研究
五、高效晶硅薄膜太阳电池研究
第三节 新型太阳电池
一、钙钛矿太阳电池
二、染料敏化太阳电池
三、单结太阳电池
四、叠层多结太阳电池 
五、中间能带太阳电池
六、量子点中间能带太阳电池
第四节 柔性太阳电池
一、柔性染料敏化太阳电池
二、柔性钙钛矿太阳电池
三、柔性多结薄膜 - 太阳电池
四、聚合物太阳电池
第四章 发展思路与发展方向
第一节 光电能量转换和绿色地球
一、发展太阳电池科学技术的重要性
二、太阳电池科学技术的发展历程和思路
三、主要太阳电池品种的发展方向
第二节 太阳电池产业的发展策略
一、国际发展策略
二、国内发展策略
第三节 能源互联网建设
一、能源互联网的概念
二、太阳电池发展有效推动能源互联网发展
三、能源互联网的建设与发展促进太阳电池发展
四、能源互联网建设关键技术分析
五、关于发展能源互联网的一些建议
第五章 资助机制与政策建议
第一节 促进光伏产业发展的资助机制
第二节 促进光伏产业发展的政策建议
一、产业规划政策
二、科技创新政策
三、人才培养政策
四、市场环境建设政策
参考文献
关键词索引
[1] Grancini G, Roldancarmona C, Zimmermann I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8: 15684.
[2] Zhu X, Yang D, Yang R, et al. Superior stability for perovskite solar cells with 20% effi ciency using vacuum co-evaporation. Nanoscale, 2017, 9(34): 12316-12323.
[3] Zhang H, Wang H, Chen W, et al. CuGaO2: a promising inorganic hole-transporting material for highly effi cient and stable perovskite solar cells. Advanced Materials, 2017, 29: 1604984.
[4] Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized effi ciencies greater than 20%. Science, 2017, 358(6364): 768-771.
[5] Alferov H, Andreev V, Rumyantsev V. Solar photovoltaics: trends and prospects. Semiconductors, 2004, 38: 899-908.
[6] Chapin D, Fuller C, Pearson G. A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954, 25(5): 676-677.
[7] 马文会 , 戴永年 , 杨斌 , 等 . 太阳能级硅制备新技术研究进展 . 新材料产业 , 2006, 10: 12-16.
[8] 阙端麟 . 硅材料科学与技术 . 杭州 : 浙江大学出版社 , 2000.
[9] 赵文翰 , 刘立军 . 双坩埚连续加料法单晶硅生长过程中的熔体流动与杂质输运 . 杭州 : 第十一届中国太阳级硅及光伏发电研讨会 , 2015.
[10] 汪义川 , 李剑 , 黄治国 , 等 . 高稳定性单晶硅太阳能电池 . 上海 : 第十届中国太阳能光伏会议论文 , 2008.
[11] 陈加和 . 一种具有高机械强度的掺锗直拉硅片及其制备方法 : CN200810122375. X, 2009-05-06.
[12] Muller A, Ghosh M, Sonnenschein R, et al. Silicon for photovoltaic applications. Materials Science and Engineering B—Advanced Functional Solid-State Materials, 2006, 134(2): 257-262.
[13] 杨德仁 , 朱鑫 , 汪雷 , 等 . 一种掺杂锗的定向凝固铸造多晶硅 : CN200610154949. 2, 2007-07-11.
[14] 余学功 , 杨德仁 . 掺锗的定向凝固铸造单晶硅及其制备方法 : CN200910099991. 2, 2009-12-02.
[15] Kasjanow H, Nikanorov A, Nacke B, et al. 3D coupled electromagnetic and thermal modelling of EFG silicon tube growth. Journal of Crystal Growth, 2007, 303(1): 175-179.
[16] Rohatgi A, Kim D S, Nakayashiki K, et al. High-efficiency solar cells on edge-defined filmfed grown (18.2%) and string ribbon (17.8%) silicon by rapid thermal processing. Applied Physics Letters, 2004, 84(1): 145-147.
[17] Lange H, Schwirtlich I A. Ribbon growth on substrate (RGS—a new approach to high speed growth of silicon ribbons for photovoltaics. Journal of Crystal Growth, 1990, 104(1): 108-112.
[18] Ai B, Shen H, Ban Q, X. et al. Preparation and characterization of Si sheets by renewed SSP technique. Journal of Crystal Growth, 2004, 270(3): 446-454.
[19] Gurtler R W, Baghdadi A, Ellis R J, et al. Silicon ribbon growth via the ribbon-to-ribbon (RTR) technique: process update and material characterization. Journal of Electronic Materials, 1978, 7(3): 441-477.
[20] Kojima A, Teshima K, Miyasaka T, et al. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds(2) Proc. 210th ECS Meeting, The Electrochemical Society, 2006.
[21] Kim H, Lee C, Im J, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2(591): 591.
[22] Liu M, Johnston M B, Snaith H J, et al. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395-398.
[23] Kayes B M, Nie H, Twist R, et al. 27.6% conversion efficiency, a new record for singlejunction solar cells under 1 sun illumination. Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011.
[24] Press Release, Fraunhofer Institute for Solar Energy Systems (2014). (https: //www. ise. fraunhofer. de/en/press-and-media/press-releases/pess-releases/2014/new-world-record-forsolar-cell-efficiency-at-46-percent. html).
[25] Luque A, Mart A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997, 78(26): 5014-5017.
[26] Mart A. Guadra L, Luque A. Intermediate-band solar cells//Marti A, Luque A. Next generation photovoltaics, high efficiency trough full spectru utilization. Institute of Physics Publishing, 2004: 140.
[27] Nozawa T, Arakawa Y. Theoretical analysis of multilevel intermediate-band solar cells using a drift diffusion model. Journal of Applied Physics, 2013, 113(24): 3102.
[28] Castan H, Perez E, Garcia H, et al. Experimental verification of intermediate band formation on titanium-implanted silicon. Journal of Applied Physics, 2013, 113(2): 4104.
[29] Sheu J, Huang F W, Liu Y H, et al. Photoresponses of manganese-doped gallium nitride grown by metalorganic vapor-phase epitaxy. Applied Physics Letters, 2013, 102(7): 1107.
[30] Marsen B, Klemz S, Unold T, et al. Investigation of the sub-bandgap photoresponse in CuGaS2: Fe for intermediate band solar cells. Progress in Photovoltaics, 2012, 20(6): 625-629.
[31] Tanaka T, Miyabara M, Saito K, et al. Development of ZnTe-based solar cells. Materials Science Forum, 2013, 750: 80-83.
[32] Ahsan N, Miyashita N, Islam M M, et al. Two-photon excitation in an intermediate band solar cell structure. Applied Physics Letters, 2012, 100(17): 2111.
[33] Tanabe K, Guimard D, Bordel D, et al. High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition. Applied Physics Letters, 2012, 100(19): 3905.
[34] Laghumavarapu R B, Moscho A, Khoshakhlagh A, et al. GaSb/GaAs type quantum dot solar cells for enhanced infrared spectral response. Applied Physics Letters, 2007, 90(17): 3125.
[35] Ramiro I, Marti A, Antolin E, et al. Review of experimental results related to the operation of intermediate band solar cells. IEEE Journal of Photovoltaics, 2014, 4(2): 736-748.
[36] Luque A, Marti A. The intermediate band solar cell: progress toward the realization of an attractive concept. Advanced Materials, 2010, 22(2): 160-174.
[37] Yang X G, Yang T, Wang K, et al. Intermediate-band solar cells based on InAs/GaAs quantum dots. Chinese Physics Letters, 2011, 28(3): 8401.
[38] Linares P G, Marti A, Antolin E, et al. Low-temperature concentrated light characterization applied to intermediate band solar cells. IEEE Journal of Photovoltaics, 2013, 3(2): 753-761.
[39] Venkatasubramanian R, O’Quinn B, Hills J. 18.2%(AM1.5) effrcient GaAs solar cell on optical-grade polycrystalline Ge Substrate Proceedings of the 25th IEEE Photovoltaic Specialists Conference, 1996.
[40] Sheehy M A, Tull B R, Friend C M, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation. Materials Science and Engineering B—Advanced Functional Solid-State Materials, 2007, 137(1): 289-294.
[41] Cuadra L, Mart A, L pez N. Phonon bottleneck effect and photon absorption in self-ordered quantum dot intermediate band solar cells. Paris, France: Presented at the Nineteenth European Photovoltaic Solar Energy Conference and Exhibition, 2004.
[42] Norman A G, Hanna M C, Dippo P, et al. InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediate-band solar cells. Photovoltaic Specialists Conference, 2005: 43-48.
[43] Marti A, Lopez N, Antolin E, et al. Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell. Thin Solid Films, 2006, 511-512: 638-644.
[44] Tomic S, Jones T, Harrison N M, et al. Absorption characteristics of a quantum dot array induced intermediate band: implications for solar cell design. Applied Physics Letters, 2008, 93(26): 3105.
[45] Sugaya T, Furue S, Komaki H, et al. Highly stacked and well-aligned In0.4Ga0.6AsIn0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8AsIn0.2Ga0.8As cap layer. Applied Physics Letters, 2010, 97: 183104.
[46] Guimard D, Morihara R, Bordel D, et al. Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Applied Physics Letters, 2010, 96(20): 3507.
[47] Bailey C G, Forbes D V, Polly S J, et al. Open-circuit voltage improvement of InAs/GaAs quantum-dot solar cells using reduced InAs coverage. IEEE Journal of Photovoltaics, 2012, 2(3): 269-275.
[48] Bartolo R E, Dagenais M. Challenges to the concept of an intermediate band in InAs/GaAs quantum dot solar cells. Applied Physics Letters, 2013, 103(14): 1113.
[49] Sellers D G, Polly S J, Hubbard S M, et al. Analyzing carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells. Applied Physics Letters, 2014, 104(22): 3903.
[50] Yang X, Wang K, Gu Y, et al. Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping. Solar Energy Materials and Solar Cells, 2013, 113: 144-147.
[51] Xu F, Yang X, Luo S, et al. Enhanced performance of quantum dot solar cells based on type quantum dots. Journal of Applied Physics, 2014, 116(13): 3102.
[52] Ji H, Liang B, Simmonds P J, et al. Hybrid type- InAs/GaAs and type- GaSb/GaAs quantum dot structure with enhanced photoluminescence. Applied Physics Letters, 2015, 106(10): 3104.
[53] Luo J, Stradins P, Zunger A, et al. Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors. Energy and Environmental Science, 2011, 4(7): 2546-2557.
[54] Garnett E C, Brongersma M L, Cui Y, et al. Nanowire solar cells. Annual Review of Materials Research, 2011, 41(1): 269-295.
[55] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510-519.
[56] Hirst L C, Ekinsdaukes N J. Fundamental losses in solar cells. Progress in Photovoltaics, 2011, 19(3): 286-293.
[57] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 2012, 11(3): 174-177.
[58] Conibeer G, Green M A, Corkish R, et al. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 511-512: 654-662.
[59] Lopez N, Reichertz L A, Yu K M, et al. Engineering the electronic band structure for multiband solar cells. Physical Review Letters, 2011, 106(2): 8701.
[60] Marti A, Antolin E, Stanley C R, et al. Production of photocurrent due to intermediateto-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. Physical Review Letters, 2006, 97(24): 247701.
[61] Popescu V, Bester G, Hanna M C, et al. Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga)As/Ga(As, P) quantum dot solar cells. Physical Review B, 2008, 78(20): 205321.
[62] Luque A, Marti A, Stanley C R, et al. Understanding intermediate-band solar cells. Nature Photonics, 2012, 6(3): 146-152.
[63] Cotal H L, Fetzer C, Boisvert J, et al. - multijunction solar cells for concentrating photovoltaics. Energy and Environmental Science, 2009, 2(2): 174-192.
[64] Leite M S, Woo R L, Munday J N, et al. Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency > 50%. Applied Physics Letters, 2013, 102: 033901.
[65] Dimroth F. Approaches and methodology on accelerated stress tests in fuel cells. Fraunhofer Institute for Solar Energy Systems ISE, 2014.
[66] Cho E, Green M A, Conibeer G, et al. Silicon quantum dots in a dielectric matrix for allsilicon tandem solar cells. Advances in Optoelectronics, 2007, 2007: 1-11.
[67] Wang X, Koleilat G I, Tang J, et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics, 2011, 5(8): 480-484.
[68] Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, 1982, 53(5): 3813-3818.
[69] Nozik A J. Quantum dot solar cells. Physica E—Low-Dimensional Systems & Nanostructures, 2002, 14(1): 115-120.
[70] Tisdale W A, Williams K J, Timp B A, et al. Hot-electron transfer from semiconductor nanocrystals. Science, 2010, 328(5985): 1543-1547.
[71] Sambur J, Novet T, Parkinson B. Multiple exciton collection in sensitized photovoltaic system. Science, 2010, 330: 63.
[72] Nozik A J. Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Letters, 2010, 10(8): 2735-2741.
[73] Luo J, Franceschetti A, Zunger A, et al. Carrier multiplication in semiconductor nanocrystals: theoretical screening of candidate materials based on band-structure effects. Nano Letters, 2008, 8(10): 3174-3181.
[74] Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 2004, 92(18): 186601.
[75] Schaller R D, Sykora M, Pietryga J M, et al. Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Letters, 2006, 6(3): 424-429.
[76] Semonin O E, Luther J M, Choi S, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334: 1530.
[77] Hanna M C, Nozik A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics, 2006, 100(7): 074510.
[78] Chen X, Peng D, Ju Q, et al. Photon upconversion in core-shell nanoparticles. Chemical Society Reviews, 2015, 44(6): 1318-1330.
[79] Liu G. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chemical Society Reviews, 2015, 44(6): 1635-1652.
[80] Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chemical Society Reviews, 2009, 38(4): 976-989.
[81] Timmerman D, Izeddin I, Stallinga P, et al. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nature Photonics, 2008, 2(2): 105-109.
[82] Trupke T, Green M A, Wurfel P, et al. Improving solar cell efficiencies by down-conversion of high-energy photons. Journal of Applied Physics, 2002, 92(3): 1668-1674.
[83] NREL. Research Cell Efficiency Records. https://www.energy.gov/eere/solar/downloads/research-cell-efficiency-records.
[84] Chuang C M, Brown P R, Bulovic V, et al. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 2014, 13(8): 796-801.
[85] Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Publishing Group, 2014, 6(3): 242-247.
[86] Lan X, Masala S, Sargent E H, et al. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 2014, 13(3): 233-240.
[87] Jean J, Chang S, Brown P R, et al. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Advanced Materials, 2013, 25(20): 2790-2796.
[88] Leschkies K S, Jacobs A G, Norris D J, et al. Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency. Applied Physics Letters, 2009, 95(19): 2013.
[89] Krogstrup P, Jorgensen H I, Heiss M, et al. Single-nanowire solar cells beyond the ShockleyQueisser limit. Nature Photonics, 2013, 7(4): 306-310.
[90] Wallentin J, Anttu N, Asoli D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science, 2013, 339(6123): 1057-1060.
[91] Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells. ChemSusChem, 2008, 1: 880.
[92] Schubert M B, Werner J H. Flexible solar cells for clothing. Materials Today, 2006, 9(6): 42-50.
[93] Rold n-Carmona C, Malinkiewicz O, Soriano A, et al. Flexible high efficiency perovskite solar cells. Energy and Environmental Science, 2014, 7(3): 994-997.
[94] Kaltenbrunner M, White M S, Glowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications, 2012, 3(1): 770.
[95] Oregan B C, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740.
[96] Chen H, Kuang D, Su C, et al. Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(31): 15475-15489.
[97] Yamaguchi T, Tobe N, Matsumoto D, et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Solar Energy Materials and Solar Cells, 2010, 94: 812.
[98] Park J H, Jun Y, Yun H, et al. Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. Journal of the Electrochemical Society, 2008, 155(7): 145.
[99] Haque S A, Palomares E, Upadhyaya H M, et al. Flexible dye sensitised nanocrystalline semiconductor solar cells. Chemical Communications, 2003, 24: 3008-3009.
[100] Chen L C, Ting J, Lee Y, et al. A binder-free process for making all-plastic substrate flexible dye-sensitized solar cells having a gel electrolyte. Journal of Materials Chemistry, 2012, 22(12): 5596-5601.
[101] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[102] Im J, Lee C, Lee J, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088-4093.
[103] Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganicorganic hybrid perovskite solar cells. Nature Materials, 2014, 13: 115.
[104] Yang W S, Park B, Jung E H, et al. Iodide management in formamidinium-lead-halidebased perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376-1379.
[105] Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647.
[106] Burschka J, Pellet N, Moon S, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316-319.
[107] Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2014, 8(2): 133-138.
[108] You J, Hong Z, Yang Y, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8(2): 1674-1680.
[109] Yang D, Yang R, Ren X, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Advanced Materials, 2016, 28(26): 5206-5213.
[110] Dou B, Miller E M, Christians J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. Journal of Physical Chemistry Letters, 2017, 8(19): 4960-4966.
[111] Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planarheterojunction solar cells on flexible polymer substrates. Nature Communications, 2013, 4(1): 2761.
[112] Kearns D R, Calvin M. Photovoltaic effect and photoconductivity in laminated organic systems. Journal of Chemical Physics, 1958, 29(4): 950-951.
[113] Tang C W, Vanslyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913-915.
[114] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258(5087): 1474-1476.
[115] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789-1791.
[116] Sondergaard R R, Hosel M, Angmo D, et al. Roll-to-roll fabrication of polymer solar cells. Materials Today, 2012, 15(1): 36-49.
[117] Krebs F C, Espinosa N, Hosel M, et al. 25th anniversary article: rise to power-OPV-based solar parks. Advanced Materials, 2014, 26(1): 29-39.
[118] Po R, Bernardi A, Calabrese A, et al. From lab to fab: how must the polymer solar cell materials design change?—An industrial perspective. Energy and Environmental Science, 2014, 7(3): 925-943.
[119] Shaheen S E, Brabec C J, Sariciftci N S, et al. 2.5% efficient organic plastic solar cells. Applied Physics Letters, 2001, 78(6): 841-843.
[120] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864-868.
[121] Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100. Nature Photonics, 2009, 3(5): 297-302.
[122] Chen H, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3(11): 649-653.
[123] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 591-595.
[124] You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013, 4: 1446.
[125] Zhang S, Ye L, Zhao W, et al. Realizing over 10% efficiency in polymer solar cell by device optimization. Science China—Chemistry, 2015, 58: 248.
[126] Liu Y, Zhao J, Li Z, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 2014, 5(1): 5293-5293.
[127] Chen J, Cui C, Li Y, et al. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Advanced Materials, 2015, 27: 1035.
[128] He Z, Xiao B, Liu F, et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9(3): 174-179.
[129] Gao F, Inganas O. Charge generation in polymer-fullerene bulk-heterojunction solar cells. Physical Chemistry Chemical Physics, 2014, 16(38): 20291-20304.
[130] Koster L J, Shaheen S E, Hummelen J C, et al. Pathways to a new efficiency regime for organic solar cells. Advanced Energy Materials, 2012, 2(10): 1246-1253.
[131] Hou J, Tan Z, Yan Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. Journal of the American Chemical Society, 2006, 128(14): 4911-4916.
[132] Zhang M, Guo X, Ma W, et al. A polythiophene derivative with superior properties for practical application in polymer solar cells. Advanced Materials, 2014, 26(33): 5880-5885.
[133] Svensson M, Zhang F, Veenstra S, et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials, 2003, 15(12): 988-991.
[134] Wang E, Wang L, Lan L, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Applied Physics Letters, 2008, 92(3): 033307.
[135] Qin R, Li W, Li C, et al. A planar copolymer for high efficiency polymer solar cells. Journal of the American Chemical Society, 2009, 131(41): 14612-14613.
[136] Lu L, Yu L. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Advanced Materials, 2014, 26(26): 4413-4430.
[137] Huo L, Zhang S, Guo X, et al. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angewandte Chemie, 2011, 50(41): 9697-9702.
[138] Guo X, Zhang M J, Ma W, et al. Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. Advanced Materials, 2014, 26: 4043.
[139] Wang M, Hu X, Liu P, et al. Donor-acceptor conjugated polymer based on naphtho[1, 2-c:5, 6-c]bis[1, 2, 5]thiadiazole for high-performance polymer solar cells. Journal of the American Chemical Society, 2011, 133(25): 9638-9641.
[140] Yang T, Wang M, Duan C, et al. Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy and Environmental Science, 2012, 5(8): 8208-8214.
[141] Liao S, Jhuo H, Cheng Y, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Advanced Materials, 2013, 25(34): 4766-4771.
[142] Nian L, Zhang W, Zhu N, et al. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. Journal of the American Chemical Society, 2015, 137(22): 6995-6998.
[143] Liao S, Jhuo H, Yeh P, et al. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Scientific Reports, 2015, 4(1): 6813.
[144] Cui C, Wong W, Li Y, et al. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy and Environmental Science, 2014, 7(7): 2276-2284.
[145] Zhang M, Gu Y, Guo X, et al. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8. Advanced Materials, 2013, 25(35): 4944-4949.
[146] Zhang M, Guo X, Zhang S, et al. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Advanced Materials, 2014, 26(7): 1118-1123.
[147] Zhang M, Guo X, Ma W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Advanced Materials, 2015, 27(31): 4655-4660.
[148] Vohra V, Kawashima K, Kakara T, et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9(6): 403-408.
[149] Hummelen J C, Knight B, Lepeq F, et al. Preparation and characterization of fulleroid and methanofullerene derivatives. Journal of Organic Chemistry, 1995, 60(3): 532-538.
[150] Wienk M M, Kroon J, Verhees W, et al. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angewandte Chemie, 2003, 42(29): 3371-3375.
[151] He Y, Chen H, Hou J, et al. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. Journal of the American Chemical Society, 2010, 132(4): 1377-1382.
[152] Zhao G, He Y, Li Y, et al. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Advanced Materials, 2010, 22(39): 4355-4358.
[153] Guo X, Cui C, Zhang M, et al. High efficiency polymer solar cells based on poly (3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy and Environmental Science, 2012, 5(7): 7943-7949.
[154] Meng X, Zhang W, Tan Z, et al. Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70] fullerene bisadduct derivative as the acceptor. Advanced Functional Materials, 2012, 22(10): 2187-2193.
[155] He D, Du X, Xiao Z, et al. Methanofullerenes, C60(CH2)n (n = 1, 2, 3), as building blocks for high-performance acceptors used in organic solar cells. Organic Letters, 2014, 16(2): 612-615.
[156] Lin Y, Zhan X. Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Materials Horizons, 2014, 1(5): 470-488.
[157] Lin Y, Cheng P, Li Y, et al. A 3D star-shaped non-fullerene acceptor for solution-processed organic solar cells with a high open-circuit voltage of 1.18V. Chemical Communications, 2012, 48(39): 4773-4775.
[158] Lin Y, Li Y, Zhan X, et al. A solution-processable electron acceptor based on dibenzosilole and diketopyrrolopyrrole for organic solar cells. Advanced Energy Materials, 2013, 3(6): 724-728.
[159] Zhou Y, Ding L, Shi K, et al. A non-fullerene small molecule as efficient electron acceptor in organic bulk heterojunction solar cells. Advanced Materials, 2012, 24(7): 957-961.
[160] Zhou Y, Dai Y, Zheng Y, et al. Non-fullerene acceptors containing fluoranthene-fused imides for solution-processed inverted organic solar cells. Chemical Communications, 2013, 49(51): 5802-5804.
[161] Yang Y, Zhang G, Yu C, et al. New conjugated molecular scaffolds based on [2, 2] paracyclophane as electron acceptors for organic photovoltaic cells. Chemical Communications, 2014, 50(69): 9939-9942.
[162] Zhan X, Tan Z, Domercq B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. Journal of the American Chemical Society, 2007, 129(23): 7246-7247.
[163] Facchetti A. Polymer donor-polymer acceptor (all-polymer) solar cells. Materials Today, 2013, 16(4): 123-132.
[164] Liu Y, Mu C, Jiang K, et al. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Advanced Materials, 2015, 27(6): 1015-1020.
[165] Lin Y, Wang J, Zhang Z, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials, 2015, 27(7): 1170-1174.
[166] Zhong Y, Trinh M T, Chen R, et al. Efficient organic solar cells with helical perylene diimide electron acceptors. Journal of the American Chemical Society, 2014, 136(43): 15215-15221.
[167] Jiang W, Ye L, Li X, et al. Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chemical Communications, 2014, 50(8): 1024-1026.
[168] Ye L, Jiang W, Zhao W, et al. Selecting a donor polymer for realizing favorable morphology in efficient non-fullerene acceptor-based solar cells. Small, 2014, 10(22): 4658-4663.
[169] Lin Y, Zhang Z, Bai H, et al. High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy and Environmental Science, 2015, 8(2): 610-616.
[170] Zhou E, Cong J, Hashimoto K, et al. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Advanced Materials, 2013, 25(48): 6991-6996.
[171] Gao L, Zhang Z, Xue L, et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Advanced Materials, 2016, 4: 629.
[172] Zhang X, Lu Z, Ye L, et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Advanced Materials, 2013, 25(40): 5791-5797.
[173] Zhang X, Zhan C, Yao J, et al. Non-fullerene organic solar cells with 6.1% efficiency through fine-tuning parameters of the film-forming process. Chemistry of Materials, 2015, 27(1): 166-173.
[174] Y Lin Y, Wang Y, Wang J, et al. A star-shaped perylene diimide electron acceptor for highperformance organic solar cells. Advanced Materials, 2014, 26(30): 5137-5142.
[175] Zhang X, Yao J, Zhan C, et al. A selenophenyl bridged perylene diimide dimer as an efficient solution-processable small molecule acceptor. Chemical Communications, 2015, 51(6): 1058-1061.
[176] Zang Y, Li C, Chueh C, et al. Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. Advanced Materials, 2014, 26(32): 5708-5714.
[177] Zhao J, Li Y, Lin H, et al. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy and Environmental Science, 2015, 8(2): 520-525.
[178] Cheng P, Ye L, Zhao X, et al. Binary additives synergistically boost the efficiency of allpolymer solar cells up to 3.45%. Energy and Environmental Science, 2014, 7(4): 1351-1356.
[179] Zhou Y, Kurosawa T, Ma W, et al. High performance all-polymer solar cell via polymer side-chain engineering. Advanced Materials, 2014, 26(22): 3767-3772.
[180] Earmme T, Hwang Y, Subramaniyan S, et al. All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent. Advanced Materials, 2014, 26: 6080.
[181] Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457(7230): 679-686.
[182] Mori D, Benten H, Okada I, et al. Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy and Environmental Science, 2014, 7: 2939.
[183] Mu C, Liu P, Ma W, et al. High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Advanced Materials, 2014, 26(42): 7224-7230.
[184] Kang H, Uddin M A, Lee C, et al. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. Journal of the American Chemical Society, 2015, 137(6): 2359-2365.
[185] Lee C, Kang H, Lee W, et al. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Advanced Materials, 2015, 27(15): 2466-2471.
[186] Yip H, Jen A K. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy and Environmental Science, 2012, 5(3): 5994-6011.
[187] Kim J Y, Kim S H, Lee H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Advanced Materials, 2006, 18(5): 572-576.
[188] Park M, Li J, Kumar A, et al. Doping of the metal oxide nanostructure and its influence in organic electronics. Advanced Functional Materials, 2009, 19(8): 1241-1246.
[189] Faber H, Burkhardt M, Jedaa A, et al. Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles. Advanced Materials, 2009, 21(30): 3099-3104.
[190] Ha Y E, Jo M Y, Park J, et al. Inverted type polymer solar cells with self-assembled monolayer treated ZnO. Journal of Physical Chemistry C, 2013, 117(6): 2646-2652.
[191] Ha Y E, Jo M Y, Park J, et al. Effect of self-assembled monolayer treated ZnO as an electron transporting layer on the photovoltaic properties of inverted type polymer solar cells. Synthetic Metals, 2014, 187: 113-117.
[192] Wang F, Tan Z, Li Y, et al. Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energy and Environmental Science, 2015, 8(4): 1059-1091.
[193] Tan Z, Li S, Wang F, et al. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific Reports, 2015, 4(1): 4691.
[194] Huang F, Wu H, Wang D, et al. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chemistry of Materials, 2004, 16(4): 708-716.
[195] Na S, Oh S, Kim S, et al. Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer. Organic Electronics, 2009, 10(3): 496-500.
[196] Seo J H, Gutacker A, Sun Y, et al. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. Journal of the American Chemical Society, 2011, 133(22): 8416-8419.
[197] Liao S, Li Y, Jen T, et al. Multiple functionalities of polyfluorene grafted with metal ionintercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: optical interference, hole blocking, interfacial dipole, and electron conduction. Journal of the American Chemical Society, 2012, 134(35): 14271-14274.
[198] Chen Y, Jiang Z, Gao M, et al. Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer. Applied Physics Letters, 2012, 100(20): 203304.
[199] Lv M, Li S, Jasieniak J J, et al. A hyperbranched conjugated polymer as the cathode interlayer for high-performance polymer solar cells. Advanced Materials, 2013, 25(47): 6889-6894.
[200] Zhou Y, Fuenteshernandez C, Shim J W, et al. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327-332.
[201] O’Malley K, Li C, Yip H, et al. Enhanced open-circuit voltage in high performance polymer/fullerene bulk-heterojunction solar cells by cathode modification with a C60surfactant. Advanced Energy Materials, 2012, 2: 82.
[202] Li C, Chueh C, Ding F, et al. Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells. Advanced Materials, 2013, 25(32): 4425-4430.
[203] Duan C, Zhong C, Liu C, et al. Highly efficient inverted polymer solar cells based on an alcohol soluble fullerene derivative interfacial modification material. Chemistry of Materials, 2012, 24(9): 1682-1689.
[204] Duan C, Cai W, Hsu B B, et al. Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy and Environmental Science, 2013, 6(10): 3022-3034.
[205] Hong D, Lv M, Lei M, et al. N-acyldithieno[3, 2-b: 2', 3'-d]pyrrole-based low-band-gap conjugated polymer solar cells with amine-modified [6, 6]-phenyl-C61-butyric acid ester cathode interlayers. ACS Applied Materials and Interfaces, 2013, 5(21): 10995-11003.
[206] Li S, Lei M, Lv M, et al. [6, 6]-Phenyl-C61-butyric acid dimethylamino ester as a cathode buffer layer for high-performance polymer solar cells. Advanced Energy Materials, 2013, 3(12): 1569-1574.
[207] Wei Q, Nishizawa T, Tajima K, et al. Self-organized buffer layers in organic solar cells. Advanced Materials, 2008, 20(11): 2211-2216.
[208] Tai Q, Li J, Liu Z, et al. Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol. Journal of Materials Chemistry, 2011, 21(19): 6848-6853.
[209] Jung J W, Jo J W, Jo W H, et al. Enhanced performance and air stability of polymer solar cells by formation of a self-assembled buffer layer from fullerene-end-capped poly(ethylene glycol). Advanced Materials, 2011, 23(15): 1782-1787.
[210] Page Z A, Liu Y, Duzhko V V, et al. Fulleropyrrolidine interlayers: tailoring electrodes to raise organic solar cell efficiency. Science, 2014, 346(6208): 441-444.
[211] Smith D D, Cousins P J, Westerberg S, et al. Toward the practical limits of silicon solar cells. IEEE Journal of Photovoltaics, 2014, 4(6): 1465-1469.
[212] Nakamura J, Asano N, Hieda T, et al. Development of hetero junction back contact Si solar cells. IEEE Journal of Photovoltaics, 2014, 4: 1491-1495.
[213] Masuko K, Shigematsu M, Hashiguchi T, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE Journal of Photovoltaics, 2014, 4: 1433-1435.
[214] 邓庆维 , 黄永光 , 朱洪亮 . 25% 效率晶体硅基太阳能电池的最新进展 . 激光与光电子学进展 , 2015, 52: 110002.
[215] 肖旭东 , 杨春雷 . 薄膜太阳能电池 . 北京 : 科学出版社 , 2014.
暂无
新书推荐