[1] Grancini G, Roldancarmona C, Zimmermann I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8: 15684.
[2] Zhu X, Yang D, Yang R, et al. Superior stability for perovskite solar cells with 20% effi ciency using vacuum co-evaporation. Nanoscale, 2017, 9(34): 12316-12323.
[3] Zhang H, Wang H, Chen W, et al. CuGaO2: a promising inorganic hole-transporting material for highly effi cient and stable perovskite solar cells. Advanced Materials, 2017, 29: 1604984.
[4] Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized effi ciencies greater than 20%. Science, 2017, 358(6364): 768-771.
[5] Alferov H, Andreev V, Rumyantsev V. Solar photovoltaics: trends and prospects. Semiconductors, 2004, 38: 899-908.
[6] Chapin D, Fuller C, Pearson G. A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954, 25(5): 676-677.
[7] 马文会 , 戴永年 , 杨斌 , 等 . 太阳能级硅制备新技术研究进展 . 新材料产业 , 2006, 10: 12-16.
[8] 阙端麟 . 硅材料科学与技术 . 杭州 : 浙江大学出版社 , 2000.
[9] 赵文翰 , 刘立军 . 双坩埚连续加料法单晶硅生长过程中的熔体流动与杂质输运 . 杭州 : 第十一届中国太阳级硅及光伏发电研讨会 , 2015.
[10] 汪义川 , 李剑 , 黄治国 , 等 . 高稳定性单晶硅太阳能电池 . 上海 : 第十届中国太阳能光伏会议论文 , 2008.
[11] 陈加和 . 一种具有高机械强度的掺锗直拉硅片及其制备方法 : CN200810122375. X, 2009-05-06.
[12] Muller A, Ghosh M, Sonnenschein R, et al. Silicon for photovoltaic applications. Materials Science and Engineering B—Advanced Functional Solid-State Materials, 2006, 134(2): 257-262.
[13] 杨德仁 , 朱鑫 , 汪雷 , 等 . 一种掺杂锗的定向凝固铸造多晶硅 : CN200610154949. 2, 2007-07-11.
[14] 余学功 , 杨德仁 . 掺锗的定向凝固铸造单晶硅及其制备方法 : CN200910099991. 2, 2009-12-02.
[15] Kasjanow H, Nikanorov A, Nacke B, et al. 3D coupled electromagnetic and thermal modelling of EFG silicon tube growth. Journal of Crystal Growth, 2007, 303(1): 175-179.
[16] Rohatgi A, Kim D S, Nakayashiki K, et al. High-efficiency solar cells on edge-defined filmfed grown (18.2%) and string ribbon (17.8%) silicon by rapid thermal processing. Applied Physics Letters, 2004, 84(1): 145-147.
[17] Lange H, Schwirtlich I A. Ribbon growth on substrate (RGS—a new approach to high speed growth of silicon ribbons for photovoltaics. Journal of Crystal Growth, 1990, 104(1): 108-112.
[18] Ai B, Shen H, Ban Q, X. et al. Preparation and characterization of Si sheets by renewed SSP technique. Journal of Crystal Growth, 2004, 270(3): 446-454.
[19] Gurtler R W, Baghdadi A, Ellis R J, et al. Silicon ribbon growth via the ribbon-to-ribbon (RTR) technique: process update and material characterization. Journal of Electronic Materials, 1978, 7(3): 441-477.
[20] Kojima A, Teshima K, Miyasaka T, et al. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds(2) Proc. 210th ECS Meeting, The Electrochemical Society, 2006.
[21] Kim H, Lee C, Im J, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2(591): 591.
[22] Liu M, Johnston M B, Snaith H J, et al. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395-398.
[23] Kayes B M, Nie H, Twist R, et al. 27.6% conversion efficiency, a new record for singlejunction solar cells under 1 sun illumination. Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011.
[24] Press Release, Fraunhofer Institute for Solar Energy Systems (2014). (https: //www. ise. fraunhofer. de/en/press-and-media/press-releases/pess-releases/2014/new-world-record-forsolar-cell-efficiency-at-46-percent. html).
[25] Luque A, Mart A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997, 78(26): 5014-5017.
[26] Mart A. Guadra L, Luque A. Intermediate-band solar cells//Marti A, Luque A. Next generation photovoltaics, high efficiency trough full spectru utilization. Institute of Physics Publishing, 2004: 140.
[27] Nozawa T, Arakawa Y. Theoretical analysis of multilevel intermediate-band solar cells using a drift diffusion model. Journal of Applied Physics, 2013, 113(24): 3102.
[28] Castan H, Perez E, Garcia H, et al. Experimental verification of intermediate band formation on titanium-implanted silicon. Journal of Applied Physics, 2013, 113(2): 4104.
[29] Sheu J, Huang F W, Liu Y H, et al. Photoresponses of manganese-doped gallium nitride grown by metalorganic vapor-phase epitaxy. Applied Physics Letters, 2013, 102(7): 1107.
[30] Marsen B, Klemz S, Unold T, et al. Investigation of the sub-bandgap photoresponse in CuGaS2: Fe for intermediate band solar cells. Progress in Photovoltaics, 2012, 20(6): 625-629.
[31] Tanaka T, Miyabara M, Saito K, et al. Development of ZnTe-based solar cells. Materials Science Forum, 2013, 750: 80-83.
[32] Ahsan N, Miyashita N, Islam M M, et al. Two-photon excitation in an intermediate band solar cell structure. Applied Physics Letters, 2012, 100(17): 2111.
[33] Tanabe K, Guimard D, Bordel D, et al. High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition. Applied Physics Letters, 2012, 100(19): 3905.
[34] Laghumavarapu R B, Moscho A, Khoshakhlagh A, et al. GaSb/GaAs type quantum dot solar cells for enhanced infrared spectral response. Applied Physics Letters, 2007, 90(17): 3125.
[35] Ramiro I, Marti A, Antolin E, et al. Review of experimental results related to the operation of intermediate band solar cells. IEEE Journal of Photovoltaics, 2014, 4(2): 736-748.
[36] Luque A, Marti A. The intermediate band solar cell: progress toward the realization of an attractive concept. Advanced Materials, 2010, 22(2): 160-174.
[37] Yang X G, Yang T, Wang K, et al. Intermediate-band solar cells based on InAs/GaAs quantum dots. Chinese Physics Letters, 2011, 28(3): 8401.
[38] Linares P G, Marti A, Antolin E, et al. Low-temperature concentrated light characterization applied to intermediate band solar cells. IEEE Journal of Photovoltaics, 2013, 3(2): 753-761.
[39] Venkatasubramanian R, O’Quinn B, Hills J. 18.2%(AM1.5) effrcient GaAs solar cell on optical-grade polycrystalline Ge Substrate Proceedings of the 25th IEEE Photovoltaic Specialists Conference, 1996.
[40] Sheehy M A, Tull B R, Friend C M, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation. Materials Science and Engineering B—Advanced Functional Solid-State Materials, 2007, 137(1): 289-294.
[41] Cuadra L, Mart A, L pez N. Phonon bottleneck effect and photon absorption in self-ordered quantum dot intermediate band solar cells. Paris, France: Presented at the Nineteenth European Photovoltaic Solar Energy Conference and Exhibition, 2004.
[42] Norman A G, Hanna M C, Dippo P, et al. InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediate-band solar cells. Photovoltaic Specialists Conference, 2005: 43-48.
[43] Marti A, Lopez N, Antolin E, et al. Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell. Thin Solid Films, 2006, 511-512: 638-644.
[44] Tomic S, Jones T, Harrison N M, et al. Absorption characteristics of a quantum dot array induced intermediate band: implications for solar cell design. Applied Physics Letters, 2008, 93(26): 3105.
[45] Sugaya T, Furue S, Komaki H, et al. Highly stacked and well-aligned In0.4Ga0.6AsIn0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8AsIn0.2Ga0.8As cap layer. Applied Physics Letters, 2010, 97: 183104.
[46] Guimard D, Morihara R, Bordel D, et al. Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Applied Physics Letters, 2010, 96(20): 3507.
[47] Bailey C G, Forbes D V, Polly S J, et al. Open-circuit voltage improvement of InAs/GaAs quantum-dot solar cells using reduced InAs coverage. IEEE Journal of Photovoltaics, 2012, 2(3): 269-275.
[48] Bartolo R E, Dagenais M. Challenges to the concept of an intermediate band in InAs/GaAs quantum dot solar cells. Applied Physics Letters, 2013, 103(14): 1113.
[49] Sellers D G, Polly S J, Hubbard S M, et al. Analyzing carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells. Applied Physics Letters, 2014, 104(22): 3903.
[50] Yang X, Wang K, Gu Y, et al. Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping. Solar Energy Materials and Solar Cells, 2013, 113: 144-147.
[51] Xu F, Yang X, Luo S, et al. Enhanced performance of quantum dot solar cells based on type quantum dots. Journal of Applied Physics, 2014, 116(13): 3102.
[52] Ji H, Liang B, Simmonds P J, et al. Hybrid type- InAs/GaAs and type- GaSb/GaAs quantum dot structure with enhanced photoluminescence. Applied Physics Letters, 2015, 106(10): 3104.
[53] Luo J, Stradins P, Zunger A, et al. Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors. Energy and Environmental Science, 2011, 4(7): 2546-2557.
[54] Garnett E C, Brongersma M L, Cui Y, et al. Nanowire solar cells. Annual Review of Materials Research, 2011, 41(1): 269-295.
[55] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510-519.
[56] Hirst L C, Ekinsdaukes N J. Fundamental losses in solar cells. Progress in Photovoltaics, 2011, 19(3): 286-293.
[57] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 2012, 11(3): 174-177.
[58] Conibeer G, Green M A, Corkish R, et al. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 511-512: 654-662.
[59] Lopez N, Reichertz L A, Yu K M, et al. Engineering the electronic band structure for multiband solar cells. Physical Review Letters, 2011, 106(2): 8701.
[60] Marti A, Antolin E, Stanley C R, et al. Production of photocurrent due to intermediateto-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. Physical Review Letters, 2006, 97(24): 247701.
[61] Popescu V, Bester G, Hanna M C, et al. Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga)As/Ga(As, P) quantum dot solar cells. Physical Review B, 2008, 78(20): 205321.
[62] Luque A, Marti A, Stanley C R, et al. Understanding intermediate-band solar cells. Nature Photonics, 2012, 6(3): 146-152.
[63] Cotal H L, Fetzer C, Boisvert J, et al. - multijunction solar cells for concentrating photovoltaics. Energy and Environmental Science, 2009, 2(2): 174-192.
[64] Leite M S, Woo R L, Munday J N, et al. Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency > 50%. Applied Physics Letters, 2013, 102: 033901.
[65] Dimroth F. Approaches and methodology on accelerated stress tests in fuel cells. Fraunhofer Institute for Solar Energy Systems ISE, 2014.
[66] Cho E, Green M A, Conibeer G, et al. Silicon quantum dots in a dielectric matrix for allsilicon tandem solar cells. Advances in Optoelectronics, 2007, 2007: 1-11.
[67] Wang X, Koleilat G I, Tang J, et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics, 2011, 5(8): 480-484.
[68] Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, 1982, 53(5): 3813-3818.
[69] Nozik A J. Quantum dot solar cells. Physica E—Low-Dimensional Systems & Nanostructures, 2002, 14(1): 115-120.
[70] Tisdale W A, Williams K J, Timp B A, et al. Hot-electron transfer from semiconductor nanocrystals. Science, 2010, 328(5985): 1543-1547.
[71] Sambur J, Novet T, Parkinson B. Multiple exciton collection in sensitized photovoltaic system. Science, 2010, 330: 63.
[72] Nozik A J. Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Letters, 2010, 10(8): 2735-2741.
[73] Luo J, Franceschetti A, Zunger A, et al. Carrier multiplication in semiconductor nanocrystals: theoretical screening of candidate materials based on band-structure effects. Nano Letters, 2008, 8(10): 3174-3181.
[74] Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 2004, 92(18): 186601.
[75] Schaller R D, Sykora M, Pietryga J M, et al. Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Letters, 2006, 6(3): 424-429.
[76] Semonin O E, Luther J M, Choi S, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334: 1530.
[77] Hanna M C, Nozik A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics, 2006, 100(7): 074510.
[78] Chen X, Peng D, Ju Q, et al. Photon upconversion in core-shell nanoparticles. Chemical Society Reviews, 2015, 44(6): 1318-1330.
[79] Liu G. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chemical Society Reviews, 2015, 44(6): 1635-1652.
[80] Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chemical Society Reviews, 2009, 38(4): 976-989.
[81] Timmerman D, Izeddin I, Stallinga P, et al. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nature Photonics, 2008, 2(2): 105-109.
[82] Trupke T, Green M A, Wurfel P, et al. Improving solar cell efficiencies by down-conversion of high-energy photons. Journal of Applied Physics, 2002, 92(3): 1668-1674.
[83] NREL. Research Cell Efficiency Records. https://www.energy.gov/eere/solar/downloads/research-cell-efficiency-records.
[84] Chuang C M, Brown P R, Bulovic V, et al. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 2014, 13(8): 796-801.
[85] Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Publishing Group, 2014, 6(3): 242-247.
[86] Lan X, Masala S, Sargent E H, et al. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 2014, 13(3): 233-240.
[87] Jean J, Chang S, Brown P R, et al. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Advanced Materials, 2013, 25(20): 2790-2796.
[88] Leschkies K S, Jacobs A G, Norris D J, et al. Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency. Applied Physics Letters, 2009, 95(19): 2013.
[89] Krogstrup P, Jorgensen H I, Heiss M, et al. Single-nanowire solar cells beyond the ShockleyQueisser limit. Nature Photonics, 2013, 7(4): 306-310.
[90] Wallentin J, Anttu N, Asoli D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science, 2013, 339(6123): 1057-1060.
[91] Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells. ChemSusChem, 2008, 1: 880.
[92] Schubert M B, Werner J H. Flexible solar cells for clothing. Materials Today, 2006, 9(6): 42-50.
[93] Rold n-Carmona C, Malinkiewicz O, Soriano A, et al. Flexible high efficiency perovskite solar cells. Energy and Environmental Science, 2014, 7(3): 994-997.
[94] Kaltenbrunner M, White M S, Glowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications, 2012, 3(1): 770.
[95] Oregan B C, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740.
[96] Chen H, Kuang D, Su C, et al. Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(31): 15475-15489.
[97] Yamaguchi T, Tobe N, Matsumoto D, et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Solar Energy Materials and Solar Cells, 2010, 94: 812.
[98] Park J H, Jun Y, Yun H, et al. Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. Journal of the Electrochemical Society, 2008, 155(7): 145.
[99] Haque S A, Palomares E, Upadhyaya H M, et al. Flexible dye sensitised nanocrystalline semiconductor solar cells. Chemical Communications, 2003, 24: 3008-3009.
[100] Chen L C, Ting J, Lee Y, et al. A binder-free process for making all-plastic substrate flexible dye-sensitized solar cells having a gel electrolyte. Journal of Materials Chemistry, 2012, 22(12): 5596-5601.
[101] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[102] Im J, Lee C, Lee J, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088-4093.
[103] Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganicorganic hybrid perovskite solar cells. Nature Materials, 2014, 13: 115.
[104] Yang W S, Park B, Jung E H, et al. Iodide management in formamidinium-lead-halidebased perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376-1379.
[105] Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647.
[106] Burschka J, Pellet N, Moon S, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316-319.
[107] Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2014, 8(2): 133-138.
[108] You J, Hong Z, Yang Y, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8(2): 1674-1680.
[109] Yang D, Yang R, Ren X, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Advanced Materials, 2016, 28(26): 5206-5213.
[110] Dou B, Miller E M, Christians J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. Journal of Physical Chemistry Letters, 2017, 8(19): 4960-4966.
[111] Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planarheterojunction solar cells on flexible polymer substrates. Nature Communications, 2013, 4(1): 2761.
[112] Kearns D R, Calvin M. Photovoltaic effect and photoconductivity in laminated organic systems. Journal of Chemical Physics, 1958, 29(4): 950-951.
[113] Tang C W, Vanslyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913-915.
[114] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258(5087): 1474-1476.
[115] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789-1791.
[116] Sondergaard R R, Hosel M, Angmo D, et al. Roll-to-roll fabrication of polymer solar cells. Materials Today, 2012, 15(1): 36-49.
[117] Krebs F C, Espinosa N, Hosel M, et al. 25th anniversary article: rise to power-OPV-based solar parks. Advanced Materials, 2014, 26(1): 29-39.
[118] Po R, Bernardi A, Calabrese A, et al. From lab to fab: how must the polymer solar cell materials design change?—An industrial perspective. Energy and Environmental Science, 2014, 7(3): 925-943.
[119] Shaheen S E, Brabec C J, Sariciftci N S, et al. 2.5% efficient organic plastic solar cells. Applied Physics Letters, 2001, 78(6): 841-843.
[120] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864-868.
[121] Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100. Nature Photonics, 2009, 3(5): 297-302.
[122] Chen H, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3(11): 649-653.
[123] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 591-595.
[124] You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013, 4: 1446.
[125] Zhang S, Ye L, Zhao W, et al. Realizing over 10% efficiency in polymer solar cell by device optimization. Science China—Chemistry, 2015, 58: 248.
[126] Liu Y, Zhao J, Li Z, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 2014, 5(1): 5293-5293.
[127] Chen J, Cui C, Li Y, et al. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Advanced Materials, 2015, 27: 1035.
[128] He Z, Xiao B, Liu F, et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9(3): 174-179.
[129] Gao F, Inganas O. Charge generation in polymer-fullerene bulk-heterojunction solar cells. Physical Chemistry Chemical Physics, 2014, 16(38): 20291-20304.
[130] Koster L J, Shaheen S E, Hummelen J C, et al. Pathways to a new efficiency regime for organic solar cells. Advanced Energy Materials, 2012, 2(10): 1246-1253.
[131] Hou J, Tan Z, Yan Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. Journal of the American Chemical Society, 2006, 128(14): 4911-4916.
[132] Zhang M, Guo X, Ma W, et al. A polythiophene derivative with superior properties for practical application in polymer solar cells. Advanced Materials, 2014, 26(33): 5880-5885.
[133] Svensson M, Zhang F, Veenstra S, et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials, 2003, 15(12): 988-991.
[134] Wang E, Wang L, Lan L, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Applied Physics Letters, 2008, 92(3): 033307.
[135] Qin R, Li W, Li C, et al. A planar copolymer for high efficiency polymer solar cells. Journal of the American Chemical Society, 2009, 131(41): 14612-14613.
[136] Lu L, Yu L. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Advanced Materials, 2014, 26(26): 4413-4430.
[137] Huo L, Zhang S, Guo X, et al. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angewandte Chemie, 2011, 50(41): 9697-9702.
[138] Guo X, Zhang M J, Ma W, et al. Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. Advanced Materials, 2014, 26: 4043.
[139] Wang M, Hu X, Liu P, et al. Donor-acceptor conjugated polymer based on naphtho[1, 2-c:5, 6-c]bis[1, 2, 5]thiadiazole for high-performance polymer solar cells. Journal of the American Chemical Society, 2011, 133(25): 9638-9641.
[140] Yang T, Wang M, Duan C, et al. Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy and Environmental Science, 2012, 5(8): 8208-8214.
[141] Liao S, Jhuo H, Cheng Y, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Advanced Materials, 2013, 25(34): 4766-4771.
[142] Nian L, Zhang W, Zhu N, et al. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. Journal of the American Chemical Society, 2015, 137(22): 6995-6998.
[143] Liao S, Jhuo H, Yeh P, et al. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Scientific Reports, 2015, 4(1): 6813.
[144] Cui C, Wong W, Li Y, et al. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy and Environmental Science, 2014, 7(7): 2276-2284.
[145] Zhang M, Gu Y, Guo X, et al. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8. Advanced Materials, 2013, 25(35): 4944-4949.
[146] Zhang M, Guo X, Zhang S, et al. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Advanced Materials, 2014, 26(7): 1118-1123.
[147] Zhang M, Guo X, Ma W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Advanced Materials, 2015, 27(31): 4655-4660.
[148] Vohra V, Kawashima K, Kakara T, et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9(6): 403-408.
[149] Hummelen J C, Knight B, Lepeq F, et al. Preparation and characterization of fulleroid and methanofullerene derivatives. Journal of Organic Chemistry, 1995, 60(3): 532-538.
[150] Wienk M M, Kroon J, Verhees W, et al. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angewandte Chemie, 2003, 42(29): 3371-3375.
[151] He Y, Chen H, Hou J, et al. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. Journal of the American Chemical Society, 2010, 132(4): 1377-1382.
[152] Zhao G, He Y, Li Y, et al. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Advanced Materials, 2010, 22(39): 4355-4358.
[153] Guo X, Cui C, Zhang M, et al. High efficiency polymer solar cells based on poly (3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy and Environmental Science, 2012, 5(7): 7943-7949.
[154] Meng X, Zhang W, Tan Z, et al. Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70] fullerene bisadduct derivative as the acceptor. Advanced Functional Materials, 2012, 22(10): 2187-2193.
[155] He D, Du X, Xiao Z, et al. Methanofullerenes, C60(CH2)n (n = 1, 2, 3), as building blocks for high-performance acceptors used in organic solar cells. Organic Letters, 2014, 16(2): 612-615.
[156] Lin Y, Zhan X. Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Materials Horizons, 2014, 1(5): 470-488.
[157] Lin Y, Cheng P, Li Y, et al. A 3D star-shaped non-fullerene acceptor for solution-processed organic solar cells with a high open-circuit voltage of 1.18V. Chemical Communications, 2012, 48(39): 4773-4775.
[158] Lin Y, Li Y, Zhan X, et al. A solution-processable electron acceptor based on dibenzosilole and diketopyrrolopyrrole for organic solar cells. Advanced Energy Materials, 2013, 3(6): 724-728.
[159] Zhou Y, Ding L, Shi K, et al. A non-fullerene small molecule as efficient electron acceptor in organic bulk heterojunction solar cells. Advanced Materials, 2012, 24(7): 957-961.
[160] Zhou Y, Dai Y, Zheng Y, et al. Non-fullerene acceptors containing fluoranthene-fused imides for solution-processed inverted organic solar cells. Chemical Communications, 2013, 49(51): 5802-5804.
[161] Yang Y, Zhang G, Yu C, et al. New conjugated molecular scaffolds based on [2, 2] paracyclophane as electron acceptors for organic photovoltaic cells. Chemical Communications, 2014, 50(69): 9939-9942.
[162] Zhan X, Tan Z, Domercq B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. Journal of the American Chemical Society, 2007, 129(23): 7246-7247.
[163] Facchetti A. Polymer donor-polymer acceptor (all-polymer) solar cells. Materials Today, 2013, 16(4): 123-132.
[164] Liu Y, Mu C, Jiang K, et al. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Advanced Materials, 2015, 27(6): 1015-1020.
[165] Lin Y, Wang J, Zhang Z, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials, 2015, 27(7): 1170-1174.
[166] Zhong Y, Trinh M T, Chen R, et al. Efficient organic solar cells with helical perylene diimide electron acceptors. Journal of the American Chemical Society, 2014, 136(43): 15215-15221.
[167] Jiang W, Ye L, Li X, et al. Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chemical Communications, 2014, 50(8): 1024-1026.
[168] Ye L, Jiang W, Zhao W, et al. Selecting a donor polymer for realizing favorable morphology in efficient non-fullerene acceptor-based solar cells. Small, 2014, 10(22): 4658-4663.
[169] Lin Y, Zhang Z, Bai H, et al. High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy and Environmental Science, 2015, 8(2): 610-616.
[170] Zhou E, Cong J, Hashimoto K, et al. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Advanced Materials, 2013, 25(48): 6991-6996.
[171] Gao L, Zhang Z, Xue L, et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Advanced Materials, 2016, 4: 629.
[172] Zhang X, Lu Z, Ye L, et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Advanced Materials, 2013, 25(40): 5791-5797.
[173] Zhang X, Zhan C, Yao J, et al. Non-fullerene organic solar cells with 6.1% efficiency through fine-tuning parameters of the film-forming process. Chemistry of Materials, 2015, 27(1): 166-173.
[174] Y Lin Y, Wang Y, Wang J, et al. A star-shaped perylene diimide electron acceptor for highperformance organic solar cells. Advanced Materials, 2014, 26(30): 5137-5142.
[175] Zhang X, Yao J, Zhan C, et al. A selenophenyl bridged perylene diimide dimer as an efficient solution-processable small molecule acceptor. Chemical Communications, 2015, 51(6): 1058-1061.
[176] Zang Y, Li C, Chueh C, et al. Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. Advanced Materials, 2014, 26(32): 5708-5714.
[177] Zhao J, Li Y, Lin H, et al. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy and Environmental Science, 2015, 8(2): 520-525.
[178] Cheng P, Ye L, Zhao X, et al. Binary additives synergistically boost the efficiency of allpolymer solar cells up to 3.45%. Energy and Environmental Science, 2014, 7(4): 1351-1356.
[179] Zhou Y, Kurosawa T, Ma W, et al. High performance all-polymer solar cell via polymer side-chain engineering. Advanced Materials, 2014, 26(22): 3767-3772.
[180] Earmme T, Hwang Y, Subramaniyan S, et al. All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent. Advanced Materials, 2014, 26: 6080.
[181] Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457(7230): 679-686.
[182] Mori D, Benten H, Okada I, et al. Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy and Environmental Science, 2014, 7: 2939.
[183] Mu C, Liu P, Ma W, et al. High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Advanced Materials, 2014, 26(42): 7224-7230.
[184] Kang H, Uddin M A, Lee C, et al. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. Journal of the American Chemical Society, 2015, 137(6): 2359-2365.
[185] Lee C, Kang H, Lee W, et al. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Advanced Materials, 2015, 27(15): 2466-2471.
[186] Yip H, Jen A K. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy and Environmental Science, 2012, 5(3): 5994-6011.
[187] Kim J Y, Kim S H, Lee H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Advanced Materials, 2006, 18(5): 572-576.
[188] Park M, Li J, Kumar A, et al. Doping of the metal oxide nanostructure and its influence in organic electronics. Advanced Functional Materials, 2009, 19(8): 1241-1246.
[189] Faber H, Burkhardt M, Jedaa A, et al. Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles. Advanced Materials, 2009, 21(30): 3099-3104.
[190] Ha Y E, Jo M Y, Park J, et al. Inverted type polymer solar cells with self-assembled monolayer treated ZnO. Journal of Physical Chemistry C, 2013, 117(6): 2646-2652.
[191] Ha Y E, Jo M Y, Park J, et al. Effect of self-assembled monolayer treated ZnO as an electron transporting layer on the photovoltaic properties of inverted type polymer solar cells. Synthetic Metals, 2014, 187: 113-117.
[192] Wang F, Tan Z, Li Y, et al. Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energy and Environmental Science, 2015, 8(4): 1059-1091.
[193] Tan Z, Li S, Wang F, et al. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific Reports, 2015, 4(1): 4691.
[194] Huang F, Wu H, Wang D, et al. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chemistry of Materials, 2004, 16(4): 708-716.
[195] Na S, Oh S, Kim S, et al. Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer. Organic Electronics, 2009, 10(3): 496-500.
[196] Seo J H, Gutacker A, Sun Y, et al. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. Journal of the American Chemical Society, 2011, 133(22): 8416-8419.
[197] Liao S, Li Y, Jen T, et al. Multiple functionalities of polyfluorene grafted with metal ionintercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: optical interference, hole blocking, interfacial dipole, and electron conduction. Journal of the American Chemical Society, 2012, 134(35): 14271-14274.
[198] Chen Y, Jiang Z, Gao M, et al. Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer. Applied Physics Letters, 2012, 100(20): 203304.
[199] Lv M, Li S, Jasieniak J J, et al. A hyperbranched conjugated polymer as the cathode interlayer for high-performance polymer solar cells. Advanced Materials, 2013, 25(47): 6889-6894.
[200] Zhou Y, Fuenteshernandez C, Shim J W, et al. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327-332.
[201] O’Malley K, Li C, Yip H, et al. Enhanced open-circuit voltage in high performance polymer/fullerene bulk-heterojunction solar cells by cathode modification with a C60surfactant. Advanced Energy Materials, 2012, 2: 82.
[202] Li C, Chueh C, Ding F, et al. Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells. Advanced Materials, 2013, 25(32): 4425-4430.
[203] Duan C, Zhong C, Liu C, et al. Highly efficient inverted polymer solar cells based on an alcohol soluble fullerene derivative interfacial modification material. Chemistry of Materials, 2012, 24(9): 1682-1689.
[204] Duan C, Cai W, Hsu B B, et al. Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy and Environmental Science, 2013, 6(10): 3022-3034.
[205] Hong D, Lv M, Lei M, et al. N-acyldithieno[3, 2-b: 2', 3'-d]pyrrole-based low-band-gap conjugated polymer solar cells with amine-modified [6, 6]-phenyl-C61-butyric acid ester cathode interlayers. ACS Applied Materials and Interfaces, 2013, 5(21): 10995-11003.
[206] Li S, Lei M, Lv M, et al. [6, 6]-Phenyl-C61-butyric acid dimethylamino ester as a cathode buffer layer for high-performance polymer solar cells. Advanced Energy Materials, 2013, 3(12): 1569-1574.
[207] Wei Q, Nishizawa T, Tajima K, et al. Self-organized buffer layers in organic solar cells. Advanced Materials, 2008, 20(11): 2211-2216.
[208] Tai Q, Li J, Liu Z, et al. Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol. Journal of Materials Chemistry, 2011, 21(19): 6848-6853.
[209] Jung J W, Jo J W, Jo W H, et al. Enhanced performance and air stability of polymer solar cells by formation of a self-assembled buffer layer from fullerene-end-capped poly(ethylene glycol). Advanced Materials, 2011, 23(15): 1782-1787.
[210] Page Z A, Liu Y, Duzhko V V, et al. Fulleropyrrolidine interlayers: tailoring electrodes to raise organic solar cell efficiency. Science, 2014, 346(6208): 441-444.
[211] Smith D D, Cousins P J, Westerberg S, et al. Toward the practical limits of silicon solar cells. IEEE Journal of Photovoltaics, 2014, 4(6): 1465-1469.
[212] Nakamura J, Asano N, Hieda T, et al. Development of hetero junction back contact Si solar cells. IEEE Journal of Photovoltaics, 2014, 4: 1491-1495.
[213] Masuko K, Shigematsu M, Hashiguchi T, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE Journal of Photovoltaics, 2014, 4: 1433-1435.
[214] 邓庆维 , 黄永光 , 朱洪亮 . 25% 效率晶体硅基太阳能电池的最新进展 . 激光与光电子学进展 , 2015, 52: 110002.
[215] 肖旭东 , 杨春雷 . 薄膜太阳能电池 . 北京 : 科学出版社 , 2014.