[1]钱学森 . 现代力学——在一九七八年全国力学规划会议上的发言 . 力学与实践,1979,
1(1):4-9.
[2]武际可 . 力学史. 2 版 . 上海:上海辞书出版社,2010.
[3]中国力学学会 . 力学与生产建设 . 北京:北京大学出版社,1982.
[4] 中国力学学会 . 力学—迎接 21 世纪新的挑战 . 力学与实践,1995,17(2):1-18.
[5]中国力学学会 . 人、环境与力学 . 北京:科学出版社,1990.
[6]Yang W,Wang H T,Li T F,et al. X-Mechanics—An endless frontier. Science China Physics,Mechanics & Astronomy,2018,62(1):14601.
[7]中国力学学会 . 力学—迎接 21 世纪新的挑战 . 北京:北京理工大学出版社,1997.
[8]中国力学学会 . 中国学科史研究报告系列·中国力学学科史 . 北京:中国科学技术出版社,2012.
[9]中华人民共和国国务院 . 国家中长期科学和技术发展规划纲要 . 北京:中国法制出版社,
2006.
[10]国家自然科学基金委员会数学物理科学部 . 力学学科发展研究报告 . 北京:科学出版社,2007.
[11] 杨卫 . 中国力学 60 年 . 力学学报,2017,49(5):973-977.
[12]孟光,周徐斌,苗军 . 航天重大工程中的力学问题 . 力学进展,2016,46(1):267- 322.
[13]冯西桥,姜宗来,樊瑜波 . 生物材料力学与仿生学,上海:上海交通大学出版社,
2017.
[14]方岱宁,裴永茂 . 铁磁固体的变形与断裂 . 北京:科学出版社,2011.
[15]杨庆生,秦庆华,马连华 . 多孔介质的热-电-化-力学耦合理论及应用 . 固体力学学报,2010,31(6):587-602.
[16] 汪国睿,刘璐琪,张忠 . 二维材料实验力学综述 . 实验力学,2017,32(5):664-676. [17] 郑晓静 . 关于极端力学 . 力学学报,2019,51(4):1266-1272.
[18]朱云飞,韩增尧,姜利祥,等 . 第一届全国物理力学青年学者学术研讨会报告综述 .
力学学报,2018,50(4):970-976.
[19]中国科学院文献情报中心课题组 . NSFC 学科发展态势评估系列研究报告之力学十年: 中国与世界 . Mechanics 2006-2015 :China in the World,2018.
[20]国家自然科学基金委员会,中国科学院 . 未来 10 年中国学科发展战略:力学 . 北京: 科学出版社,2012.
[21]黄克智,黄永刚 . 固体本构关系 . 北京:清华大学出版社,1999.
[22]Kadic M,Milton G W,van Hecke M,et al. 3D metamaterials. Nature Reviews Physics, 2019,1(3):198-210.
[23]杨卫 . 宏微观断裂力学 . 北京:国防工业出版社,1995.
[24]梁军,方国东 . 三维编织复合材料力学性能分析方法 . 哈尔滨:哈尔滨工业大学出版社,2014.
[25]钟万勰,程耿东 . 跨世纪的中国计算力学 . 力学与实践,1999,21(1):11-16.
[26]徐庆红,姜杰,王明宇 . 结构动力学与运载火箭技术发展 . 力学与实践,2016,38(1):
10-13.
[27]Huang Z L,Tian Y P,Li C J,et al. Data-driven automated discovery of variational laws hidden in physical systems. Journal of the Mechanics and Physics of Solids,2020,137 :103871.
[28]Zhang S L,Zhao K J,Zhu T,et al. Electrochemomechanical degradation of high- capacity battery electrode materials. Progress in Materials Science,2017,89 :479-521.
[29]Xue Z,Song H,Rogers J A,et al. Mechanically-guided structural designs in stretchable inorganic electronics. Advanced Materials,2019,32(15):1902254.
[30]Nathan A,Ahnood A,Cole M T,et al. Flexible electronics :The next ubiquitous platform. Proceedings of the IEEE,2012,100(13):1486-1517.
[31]Zhang Y H,Zhang F,Yan Z,et al. Printing,folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials,2017,2(4):17019.
[32]姜宗来,陈维毅,樊瑜波 . 中国生物力学研究展望 . 科技导报,2019,37(3):27-29.
[33]赵亚溥 . 纳米与介观力学 . 北京:科学出版社,2014.
[34]郑泉水,方辉宇 . 张量函数的表示理论─本构方程统一不变性研究 . 力学进展,
1996,26(1):114-137.
[35]国家自然科学基金资助项目结题报告 . 实验力学十三五发展规划调研,2015.
[36]张卫红,万敏 . 薄壁构件切削工艺动力学理论与方法 . 北京:机械工业出版社,2019.
[37]Pan B. Digital image correlation for surface deformation measurement :Historical developments, recent advances and future goals. Measurement Science and Technology,2018,29(8):082001.
[38]Cheng X M,Qu Z L,He R J,et al. An ultra-high temperature testing instrument under oxidation environment up to 1800 ℃. Review of Scienti?c Instruments,2016,87(4): 045108.
[39]魏悦广 . 先进材料及结构的跨尺度力学行为表征 . 第十三届全国物理力学学术会议论文摘要集,2014.
[40]郭万林 . 多尺度物理力学的一些进展和挑战 . 第十四届全国物理力学学术会议缩编文集,2016.
[41]胡海岩 . 学科发展规划研究:力学学科领域发展战略与优先发展领域. 2019:5-7.
[42]Pal R K,Vila J,Ruzzene M. Topologically protected edge states in mechanical metamaterials. Advances in Applied Mechanics,2019,52 :147-181.
[43]Bao G,Hu G H,Kian Y,et al. Inverse source problems in elastodynamics. Inverse Problems, 2018,34(4):045009.
[44]国家自然科学基金委员会数学物理科学部. 国家自然科学基金数理科学“十三五”规划战略研究报告 . 北京:科学出版社,2017.
[45]刘俊丽,刘曰武 . 院士谈力学 . 北京:科学出版社,2016.
[46]Li X D,Xie H M,Kang Y L,et al. A brief review and prospect of experimental solid mechanics in China. Acta Mechanica Solida Sinica,2010,23(6):498-548.
[47] 伍小平 . 近 40 年光力学进展的回顾 . 实验力学,2010,25(5):491-508.
[48]李静,朱春丽,伍小平 . 全息光镊 . 北京:科学出版社,2015.
[49]杨福俊,何小元,陈陆捷 . 现代光测力学与图像处理 . 南京:东南大学出版社,2015.
[50]Qiu W,Kang Y L. Mechanical behavior study of microdevice and nanomaterials by Raman spectroscopy :A review. Chinese Science Bulletin,2014,59(23):2811-2824.
[51]Kang Y L,Xie H M. Micro and nano metrology in experimental mechanics. Optics and Lasers in Engineering,2010,48(11):1045.
[52]李喜德,苏东川,曾杜鹃,等. 基于光学和探针技术的微纳米固体实验力学研究进展.
固体力学学报,2010,31(6):664-678.
[53]于起峰,尚洋 . 摄像测量学原理与应用研究 . 北京:科学出版社,2009.
[54]Bolzon G. Advances in experimental mechanics by the synergetic combination of full-?eld
measurement techniques and computational tools. Measurement,2014,54 :159-165.
[55]Knauss W G. Perspectives in experimental solid mechanics. International Journal of Solids and Structures,2000,37(1-2):251-266.
[56]Marichamy M,Babu S. Mechanical properties of high temperature materials :A review.
Management Science and Engineering,2019,13(1):48-52.
[57]Wu L F,Yin Y J,Zhang Q,et al. Bi-prism-based single-lens three dimensional digital image correlation system with a long working distance :Methodology and application inextreme high temperature deformation test. Science China Technological Sciences,2018, 61(1):37-50.
[58]中国科学院 . 中国学科发展战略·新型飞行器中的关键力学问题 . 北京:科学出版社,
2018.
[59]Li X D,Pedrini G,Fu Y. Optical metrology under extreme conditions. The Scienti?c World
Journal,2014,2014 :263603.
[60]Bale H A,Haboub A,MacDowell A A,et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1,600℃ . Nature Materials,2013,12(1): 40-46.
[61]Kitamura T,Sumigawa T. Experimental approach to fracture mechanics in nanometer scale. Procedia Structural Integrity,2018,13 :2180-2183.
[62]Dai X,Xie H. New methods of fabricating gratings for deformation measurements :A review. Optics and Lasers in Engineering,2017,92 :48-56.
[63]Li X,Wu X P,Kang Y. Microoptical metrology in China. Optics and Lasers in Engineering,2005,43(8):833-835.
[64]方岱宁,刘金喜 . 压电与铁电体的断裂力学 . 北京:清华大学出版社,2008.
[65]李晓玉,岳宝增 . 航天器刚-液耦合多尺度方法研究 // 北京力学会第二十五届学术年会会议论文集,2019.
[66]妙远洋,吕胜利 . 航空铝合金力学与电化学耦合点蚀损伤模型研究 . 固体力学学报,
2019,40(2):137-146.
[67]卢瑶,武吉梅,王砚,等 . 随从力作用下变速运动粘弹性硬质薄膜的稳定性研究 // 中国力学学会 . 2018 年全国固体力学学术会议摘要集(上). 北京:中国力学学会,2018.
[68]Zhang Y C,Zheng N,Cao Y,et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Science Advances,2019,5(4): eaaw1066.
[69]Yin Y F,Li M,Li Y H,et al. Skin pain sensation of epidermal electronic device/skin system considering non-Fourier heat conduction. Journal of the Mechanics and Physics of Solids,2020,138 :103927.
[70]Gong B,Lin J,Wei X,et al. Cross-linked biopolymer networks with active motors :
Mechanical response and intra-network transport. Journal of the Mechanics and Physics of Solids,2019,127 :80-93.
[71]方岱宁,刘彬 . 力电耦合物理力学计算方法 . 北京:高等教育出版社,2012.
[72]Yu P F,Hu S L,Shen S P. Electrochemomechanics with ?exoelectricity and modelling of electrochemical strain microscopy in mixed ionic-electronic conductors. Journal of Applied Physics,2016,120(6):065102.
[73]Yu W S,Shen S P. Energetics of point defect interacting with grain boundaries undergone plastic deformations. International Journal of Plasticity,2016,85 :93-109.
[74]Li S Z,Li Q Y,Carpick R W,et al. The evolving quality of frictional contact with graphene. Nature,2016,539(7630):541-545.
[75]Fu Y M,Lu H T,Nian G D,et al. Size-dependent inertial cavitation of soft materials. Journal of the Mechanics and Physics of Solids,2020,137 :103859.
[76]Yan D J,Chang J H,Zhang H,et al. Soft three-dimensional network materials with rational bio-mimetic designs. Nature Communications,2020,11(1):1180.
[77]Ma P Y,Niu B F,Lin J,et al. Sequentially controlled deformations of patterned hydrogels into 3D configurations with multilevel structures. Macromolecular Rapid Communications, 2019,40(3):1800681.
[78]Zheng S Y,Shen Y Y,Zhu F B,et al. Programmed deformations of 3D-printed tough physical hydrogels with high response speed and large output force. Advanced Functional Materials,2018,28(37):1803366.
[79]Zheng Y N,Yu Z,Mao G Y,et al. A wearable capacitive sensor based on ring/disk-
shaped electrode and porous dielectric for noncontact healthcare monitoring. Global Challenges,2020,4(5):1900079.
[80]Liang Z W,Cheng J H,Zhao Q,et al. High-performance ?exible tactile sensor enabling
intelligent haptic perception for a soft prosthetic hand. Advanced Materials Technologies, 2019,4(8):1970041.
[81]Rogers J A,Someya T,Huang Y G. Materials and mechanics for stretchable electronics. Science,2010,327(5973):1603-1607.
[82]Ma Y J,Zhang Y C,Cai S S,et al. Flexible hybrid electronics for digital healthcare. Advanced Materials,2020,32(15):1902062.
[83]陈颖,陈毅豪,李海成,等 . 超薄类皮肤固体电子器件研究进展 . 中国科学:信息科学,2018,48(6):605-625.
[84]陈伟民,付一钦,郭双喜,等 . 海洋柔性结构涡激振动的流固耦合机理和响应 . 力学进展,2017,47(1):25-91.
[85] 钱学森 . 论技术科学 . 科学通报,1957,(3):97-104.
[86]戴天民 . 力学和数学的相互关系 . 辽宁大学学报(自然科学版),1983,(2):1-7.
[87]国家自然科学基金委员会数理科学部 . 国家自然科学基金“十三五”规划 . 力学学科战略研究报告,2014 :82.
[88]闵祥伟,刘春惠 .“理工融合”教育模式的方法论基础浅析 . 北京邮电大学学报(社会科学版),2003,(4):50-53.
[89]国家自然科学基金委员会,中国科学院 . 中国学科发展战略·再生医学研究与转化应用 . 北京:科学出版社,2018.
[90]樊瑜波,张明 . 康复工程生物力学 . 上海:上海交通大学出版社,2017.
[91]龙勉,季葆华 . 细胞与分子生物力学 . 上海:上海交通大学出版社,2017.
[92]Zhang Y Z,Bu Y Q,Fang X Y,et al. A compact design of four-degree-of-freedom transmission electron microscope holder for quasi-four-dimensional characterization. Science China Technological Sciences,2020,63(7):1272-1279.
[93]Ma J Y,Lu J X,Tang L,et al. A novel instrument for investigating the dynamic
microstructure evolution of high temperature service materials up to 1150℃ in scanning electron
microscope. Review of Scienti?c Instruments,2020,91(4):043704.
[94]亢一澜,裴永茂,许峰,等 . 材料内部全场力学参数精细测量技术与表征评价方法关键科学问题 . 中国科学基金,2019,5 :533-542.
[95]Buljac A,Jailin C,Mendoza A,et al. Digital volume correlation :Review of progress and challenges. Experimental Mechanics,2018,58(5):661-708.
[96]Ramesh K. Digital Photoelasticity :Advanced Techniques and Applications. Berlin :
Springer-Verlag,2000.
[97]Frenzel T,Kadic M,Wegener M. Three-dimensional mechanical metamaterials with a twist. Science,2017,358(6366):1072-1074.
[98]Li J,Shan Z W,Ma E. Elastic strain engineering for unprecedented materials properties. MRS Bulletin,2014,39(2):108-114.
[99]Xue Z,Song H,Rogers J A,et al. Mechanically-guided structural designs in stretchable inorganic electronics. Advanced Materials,2020,32(15):1902254.
[100]Srivastava A. Elastic metamaterials and dynamic homogenization :A review. International Journal of Smart and Nano Materials,2015,6(1):41-60.
[101]Correia J,Lesiuk G,de Jesus A,et al. Recent developments on experimental techniques,fracture mechanics and fatigue approaches. The Journal of Strain Analysis for Engineering Design,2018,53(8):545.
[102]Mazars V,Caty O,Couégnat G,et al. Damage investigation and modeling of 3D woven ceramic matrix composites from X-ray tomography in-situ tensile tests. Acta Materialia, 2017,140 :130-139.
[103]Sloof W G,Pei R Z,McDonald S A,et al. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy. Scientific Reports,2016,6(1):23040.
[104]Li Y C,Xu F,Hu X F,et al. In situ investigation on the mixed-interaction mechanisms in
the metal-ceramic system’s microwave sintering. Acta Materialia,2014,66 :293-301.
[105]Coulais C,Teomy E,Reus K D,et al. Combinatorial design of textured mechanicalmetamaterials. Nature,2016,535 :529-532.
[106]Berger J B,Wadley H N G,McMeeking R M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature,2017,543 :533-537.
[107]Zheng X J. Extreme mechanics. Theoretical and Applied Mechanics Letters,2020,10(1): 1-7.
[108]Cheng G D,Li X K, Nie Y H,et al.EM-Cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Computer Methods in Applied Mechanics and Engineering, 2019, 348 :157-184.