[1]Cambridge Ltd. Sustainable materials,with both eyes open. http://www. withbotheyesopen. com/[2012-10-12].
[2]Lu K. Making strong nanomaterials ductile with gradients. Science,2014,345(6203): 1455-1456.
[3]Fang T H,Li W L,Tao N R,et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science,2011,331(6024):1587-1590.
[4]中国科学院. 中国学科发展战略·材料科学. 北京:科学出版社,2013.
[5]Kamihara Y,Watanabe T,Hirano M,et al. Iron-based layered superconductor La[O1?xFx] FeAs(x=0.05-0.12)with Tc=26K. Journal of the American Chemical Society,2008, 130(11):3296-3297.
[6]Ren Z A,Lu W,Yang J,et al.Superconductivity at 55K in iron-based F-doped layered quaternary compound Sm[O1?xFx]FeAs. Chinese Physics Letters,2008,82(6):2215- 2216.
[7]Nagamatsu J,Nakagawa N,Muranaka T,et al. Superconductivity at 39K in magnesium diboride. Nature,2001,410(6824):63-64.
[8]Ward C. Materials Genome Initiative for Global Competitiveness. Washington DC:NSTC, 2011.
[9]The White House:Office of Science and Technology Policy. Fact Sheet:The Materials Genome Initiative-Three Years of Progress. Washington DC:OSTP,2014.
[10]Introduction of Accelerated Metallurgy. ESA-New Materials and Energy Unit. http://www. accmet-project.eu/index.htme[2014-07-08].
[11]Felhleen K,Agnew S R. The materials genome initiative at the National Science Foundation:a status report after the first year of funded research. Journal of Metals, 2014,66(3):336-344.
[12]de Pablo J J,Jones B,Kovacs C L,et al. The MGI,the interplay of experiment, theory and computation. Current Opinion in Solid State and Materials Science,2014, 18(2):99-117.
[13]李涤尘,刘佳煜,王延杰,等. 4D 打印—智能材料的增材制造技术. 机电工程技术,2014(5):1-9.
[14]Gu D D,Meiners W,Wissenbach K,et al. Laser additive manufacturing of metallic components:Materials,processes and mechanisms. International Materials Reviews, 2012,57(3):133-164.
[15]Frazier W E. Metal additive manufacturing:A review. Journal of Materials Engineering and Performance,2014(23):1917-1928.
[16]Catalan G,Seidel J,Ramesh R,et al. Domain wall nanoelectronics. Review of Modern Physics,84(1):119-156.
[17]Chau R,Datta S,Doczy M,et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Press,2005,4:153-158.
[18]Semiconductor Industry Association. International Technology Roadmap for Semiconductors.
http://public.itrs.net[2013-09-08].
[19]Bernevig B A,Hughes T L,Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science,2006,314(5806):1757-1761.
[20]Knez I,Du R R,Sullivan G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Physics Review Letters,2011,107(13):136603.
[21]Zhang Y,Ke H,Chang C Z,et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Physics,2010,6(8):584-588.
[22]Chang C Z,Zhang J,Feng X,et al. Experimenal observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science,2013,340(129):167-170.
[23]Liu A Y,Cohen M L. Prediction of new low compressibility solids. Science,1989,245
(4920):841-842.
[24]Irifune T,Kurio A,Sakamoto S,et al. Ultrahard,polycrystalline diamond from graphite. Nature,2003,421(6923):599-600.
[25]Dubrovinskaia N,Solozhenko V L,Miyajima N,et al. Superhard nanocomposite of dense polymorphs of boron nitride:Noncarbon material has reached diamond hardness. Applied Physics Letters,2007,90(10):101912.
[26]Huang Q,Yu D L,Xu B,et al. Nanotwinned diamond with unprecedented hardness and stability. Nature,2014,510(2):250-253.