logo
中国学科发展战略·微纳机电系统与微纳传感器技术

中国学科发展战略·微纳机电系统与微纳传感器技术

传感器是能感受到被测量的信息并将其按一定规律转换成可用 输出信号的器件或装置。信息技术中主要包含信息获取、信息处 理(包括存储)和信息传输这三大重要技术,在作为信息源头技术 的信息获取中,传感器技术占据着越来越突出的重要地位。传感器 技术近年来获得了海量的应用,这与目前实现传感器微型化和规模 化制造的微纳机电系统技术是分不开的,微纳机电系统工艺已成为 实现传感器制造的最主要技术手段。微纳机电系统技术是多学科交 叉后的融合技术,是继集成电路(IC)技术之后,信息产业中的又 一个高新技术领域。该技术既是集成电路技术在器件功能上的扩展 和延伸,也是微电子“超越摩尔”之路向前发展的主要技术途径 之一。
本书预览点击购买
联合指导小组
组长:侯建国  李静海
副组长:秦大河  韩宇
成员:王恩哥  朱道本  傅伯杰  陈宜瑜  李树深  杨卫  高鸿钧  王笃金  苏荣辉  王长锐  邹立尧  于晟  董国轩  陈拥军  冯雪莲  姚玉鹏  王岐东  张兆田  杨列勋  孙瑞娟
 
联合工作组
组长:苏荣辉  于晟
成员:龚旭    孙粒   高阵雨  李鹏飞  钱莹洁  薛准  冯霞  马新勇
 
编委会
组长:王曦
咨询专家(按姓氏汉语拼音排序):
程建功  方家熊  何  杰   黄庆安   金庆辉  李昕欣  潘庆  陶虎   吴一戎  夏善红  杨潇
编写人员(按姓氏汉语拼音排序):
陈昌   陈方  陈滢  程建功  冯飞   胡春瑞  焦鼎   李昕欣   刘博   毛红菊   王家畴  王靖  王雪凤  魏晓玲  吴亚明   武震宇  许鹏程   徐炜  杨恒  于海涛
习近平同志在2018年两院院士大会上的重要讲话中指出:“世 界正在进入以信息产业为主导的经济发展时期。我们要把握数字 化、网络化、智能化融合发展的契机,以信息化、智能化为杠杆培 育新动能。”这一重要论述准确把握了当今世界信息技术的迅猛发 展态势,为大力发展信息技术推动国家创新发展指明了方向。
传感器技术是信息源头获取技术中的重要手段,近期受到广泛 的高度关注。根据当今各个行业对传感器体积缩小、功耗减少、价 格降低和规模制造能力增强的迫切需求,微纳传感器越来越受到应用领域的欢迎。同时,实现微纳传感器批量制造的微纳机电系统 (micro/nano-electro-mechanical systems, MEMS/NEMS )技 术也逐 步成为使用最广泛的先进工艺技术手段之一。
本书对微纳机电系统与微纳传感器领域的主要技术进行了分类 阐述,凝练了技术发展需要解决的科学问题,梳理了发展现状和趋 势,讨论了发展方向和思路,从而有针对性地提出了发展的对策建 议。本书将技术进展分析与我国的发展思路结合起来,在迎接科学 技术发展挑战的同时,着重考虑我国国情和中长期战略发展规划, 目的是让科学技术这个“第一生产力”最终落地到促进我国经济转 型提升和社会全面发展的事业中。
本书的写作和编撰人员由传感技术联合国家重点实验室的研究 人员组成,同时得到了该领域很多著名学者的指导和建议。本书的 出版得到了中国科学院和国家自然科学基金委员会等部门的立项支 持和悉心指导,也得到了科学出版社的大力支持。在本书即将付梓 之际,谨向为本书出版付出心血的全体同志致以诚挚的敬意和衷心 的感谢!
本书可作为国家相关部门制定相关科技发展规划的参考,也适 合广大科技工作者及大学生、研究生和教师阅读。当然,微纳传感 器种类很多,微纳制造技术也层出不穷,本书在有限篇幅内抓住一 些技术关键点和应用较广泛的传感器进行论述,难免挂一漏万,希 望广大读者提出宝贵的意见和建议。
王曦
2020年1月20日
总序
前言
摘要
Abstract
第一章微纳机电系统与微纳传感器的战略地位
第二章基于微纳机电系统的光学传感器及光电子芯片技术
第一节 光学MEMS技术
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
第二节集成生物光电子芯片技术
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
参考文献
第三章基于微纳机电系统的谱学分析传感器技术
第一节概述
一、谱学分析传感器的定义与内涵
二、谱学分析传感器的发展动力
第二节发展现状与发展态势
一、谱学分析传感器的发展现状
二、谱学分析传感器的发展态势
第三节发展思路与发展方向
一、谱学分析传感器的关键科学问题
二、谱学分析传感器的发展总体思路和发展目标
第四节资助机制与政策建议
参考文献
第四章基于微纳机电系统的生化传感器与微流控芯片技术
第一节微纳生化传感器技术
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
第二节 微流控芯片技术
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
参考文献
第五章基于微纳机电系统的医疗传感器技术
第一节植入式神经电极传感技术
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
第二节 中医脉诊与针灸针传感微系统
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
参考文献
第六章前沿微纳机电系统技术
第一节 基于单芯片单面的微纳加工技术
一、概述
二、发展现状与发展态势 169
三、发展思路与发展方向 175
四、资助机制与政策建议 176
第二节 应用于汽车自动驾驶技术的微纳传感器
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
第三节荧光传感材料及器件
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
第四节基于金刚石材料的传感器
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
第五节基于氮化铝压电薄膜的射频FBAR
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
第六节熔融石英的微球形陀螺
一、概述
二、发展现状与发展态势
三、发展思路与发展方向
四、资助机制与政策建议
参考文献
关键词索引
彩图
[1]刘峰.微电机械系统在光通信中的应用:现状和未来.光机电信息,2003,20 (10) : 1-8.
[2]吴亚明.光学MEMS技术及其疯信应用.功能材料与粉学报,2013,(3 ) : 119-123.
[3]陈水发.基于MEMS技术的全光交换产品.电子产品世界,2001, 8 (17) : 74.
[4]Chen R T, Nguyen H, Wu M C. A low voltage micromachined optical switch by stress- induced bending. Proceedings of 12th IEEE international Micro Electro Mechanical System Conference, 1999: 424-428.
[5]Wu M C, Lin L Y, Lee S S, et al. Micromachined free-space integrated micro-optics. Sensors and Actuators A, 1995, 50 ( 1-2) : 127-134.
[6]Song Y P, Panas R M, Hopkins J B. A review of micromirror arrays. Precision Engineering, 2018,51:729-761.
[7]晶圆级光学元件(WLO) . http://www.coema.org.cn/study/optics/20180330 Z172428.html. 2019-08-05.
[8]Jun J J, Steinmetz N A, Siegle J H, et al. Fully integrated silicon probes for high-density recording of neural activity. Nature, 2017, 551 (7679) : 232-236.
[9]Shipman S L, Nivala J, Macklis J D, et al. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature, 2017, 547 (7663 ) : 345-349.
[10]Lavis L D, Raines R T. Bright ideas for chemical biology. ACS Chemical Biology, 2008, 3 (3): 142-155.
[11]Sepulveda B, Rio J S D, Moreno M, et al. Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices. Journal of Optics A: Pure and Applied Optics, 2006, 8 (7): S561-S566.
[12]Ghasemi F, Eftekhar AA, Mousavi S H S, et al. Lab-on-chip silicon nitride microring sensor at visible wavelength using glycoprotein receptors. In CLEO: OSA: AW1L.3. 2014.
[13]周治平.硅基光电子学引发变革,产业化亟需多方努力.通信世界,2015,(25): 34.
[14]Munoz E Mico G, Bru LA, et al. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors, 2017,17 (9) : 2088.
[15]Vogt M R. Development of physical models for the simulation of optical properties of solar cell modules. Thesis for PhD. 2015.
[16]Xiong C, Pemice W H E Sun X K, et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New Journal of Physics, 2012,14 (9) : 095014.
[17]Alasaarela T, Saastamoinen T, Hiltunen J, et al. Atomic layer deposited titanium dioxide and its application in resonant waveguide grating. Appl. Opt., 2010,49 (22) : 4321-4325.
[18]Hong C, Fu H Q, Huang X Q, et al. Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications. Optics Express, 2017, 25 (25 ) : 31758- 31773.
[19]Rodriguez-de Marcos L V, Larruquert J I, Mendez J A, et al. Self-consistent optical constants of SiO2 and Ta2O5 films. Optical Materials Express, 2016,6 (11) : 3622.
[20]Syahriar A. Silica-on-silicon waveguides with MgF2 cladding layers. In 2016 International Symposium on Electronics and Smart Devices (ISESD) IEEE, 2016: 268-271.
[21]Valouch S, Sieber H, Kettlitz S, et al. Direct fabrication of PDMS waveguides via low-cost DUV irradiation for optical sensing. Optics Express, 2012, 20 (27 ) : 28855-28861.
[22]Shabahang S, Kim S, Yun S H. Light-guiding biomaterials fbr biomedical applications. Adv. Funct. Mater. 2018,28(24) : 1706635.
[23]Sirbuly D J, Law M, Yan H, et al. Semiconductor nanowires fbr subwavelength photonics integration. Phys. Chem. B, 2005,109 (32) : 15190-15213.
[24]Guan J, Liu X, Salter P S, et al. Hybrid laser written waveguides in fused silica for low loss and polarization independence. Optics Express, 2017,25 ( 5 ) : 4845-4859.
[25]Karasinski P, Tyszkiewicz C, Domanowska A, et al. Low loss, long time stable sol-gel derived silica-titania waveguide films. Materials Letters, 2015,143: 5-7.
[26]da Silva D S, Niklaus U W, et al. Femtosecond las er-written double line waveguides in germanate and tellurite glasses. SPIE, 2018,10519: 48.
[27]Petraru A, Schubert J, Schmid M, et al. Ferroelectric BaTiO3 thin-film optical waveguide modulators. Applied Physics Letters, 2002,81 ( 8 ) : 1375-377.
[28]Ma H, Jen A K X Dalton L R. Polymer-based optical waveguides: materials, processing, and devices. Adv. Mater., 2002,14 (19) : 1339-1365.
[29]Subramanian A Z, Neutens P, Dhakal A, et al. Low-loss singlemode PECVD silicon nitride photonic wire waveguides fbr 532-900 nm wavelength window fabricated within a CMOS pilot line. IEEE Photonics Journal, 2013,5 (6) : 2202809-2202809.
[30]Romero-Garcia S, Merget F, Zhong F, et al. Silicon nitride CMOS-compatible platform fbr integrated photonics applications at visible wavelengths. Opt, 2013,21 ( 12 ) : 14036-14046.
[31]Miller S E. Integrated optics: an introduction. Bell System Technical Journal, 1969,48 (7 ): 2059-2069.
[32]Almeida V R, Xu Q F, Barrios C A, et al. Guiding and confining light in void nanostructure. Optics Letters, 2004,29 ( 11 ) : 1209-1211.
[33]Stutius W, Streifer W. Silicon nitride films on silicon fbr optical waveguides. Appl. Opt., 1977,16 ( 12): 3218-3222.
[34]Zhang Y, Yang S Y, Lim A E J, et al. A compact and low loss Yjunction fbr submicron
silicon waveguide. Optics Express, 2013,21 (1) : 1310-1316.
[35]Okubo K, Uchiyamada K, Asakawa K, et al. Silicon nitride directional coupler interferometer for surface sensing. Optical Engineering, 2017,56 ( 1 ) : 017101.
[36]Mu J F, Wzquez-Cordova S A, Sefunc M A, et al. A low-loss and broadband MMI-based multi/demultiplexer in Si3N4/SiO2 technology. Journal of Lightwave Technology, 2016, 34 (15): 3603-3609.
[37]Luo L W Wiederhecker G S, Cardenas J, et al. High quality factor etchless silicon photonic ring resonators. 2011, Optics Express, 19 (7) : 6284-6289.
[38]Joo J, Park J, Kim G. Cost-effective 2x2 silicon nitride Mach-Zehnder interferometric (MZI) thermo-optic switch. IEEE Photonics Technology Letters, 2018, 30 ( 8 ) : 740-743.
[39]Park J, Joo J, Kim G, et al. Low-crosstalk silicon nitride arrayed waveguide grating for the 800-nm band. IEEE Photonics Technology Letters, 2019, 31 ( 14) : 1183-1186.
[40]Alasaarela T, Korn D, Alloatti L, et al. Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition. Optics Express, 2011,19 ( 12 ) : 11529- 11538.
[41]Li Q, Liu F F, Zhang Z Y et al. System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals. Journal of Lightwave Technology, 2008,26 (23): 3744-3751.
[42]Yang B, Yang L, Hu R, et al. Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer. Journal of Lightwave Technology, 2009,27 ( 18 ): 4091-4096.
[43]Segev E, Reimer J, Moreaux, L C, et al. Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics. Neurophotonics, 2016,4 (1) : 011002.
[44]Zisis G, Ying C Y J, Soergel E, et al. Ferroelectric domain building blocks for photonic and nonlinear optical microstructures in LiNbO3. J. Appl. Phys., 2014, 115 ( 12 ) : 124102.
[45]Dong B W, Guo X, Ho C P, et al. Silicon-on-insulator waveguide devices for broadband mid-infrared photonics. IEEE Photonics Journal, 2017,9 ( 3 ) : 1-10.
[46]Huang Q Z9 Yu J Z, Chen S W et al. Design, fabrication and characterization of a high- performance microring resonator in silicon-on-insulator. Chinese Phys. B, 2008,17 (7): 2562-2566.
[47]Zou J H, Yu Y Ye M 区 et al. Ultra-efficient silicon nitride grating coupler with bottom grating reflector. Optics Express, 2015,23 (20) : 26305-26312.
[48]Papes M, Cheben E Benedikovic D, et al. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides. Optics Express, 2016,24 (5 ) : 5026-5038.
[49]Khorasaninejad M, Shi Z, Zhu A y et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 2017,17 (3 ) : 1819- 1824.
[50]Phan T, Sell D, Wang E W, et al. High-efficiency, large-area, topology-optimized metasurfaces. Light: Science & Applications, 2019,8 ( 1 ) : 48.
[51]Sacher W D, Mikkelsen J C, Huang X, et al. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3D photonic circuits and devices. Proceedings of the IEEE 2018, 106 (12): 2232-2245.
[52]Molesky S, Lin Z, Piggott A Y et al. Inverse design in nanophotonics. Nature Photonics, 2018,12 ( 11 ) : 659-670.
[53]Spuhler M M, Offrein B J, Bona G L, et al. A very short planar silica spot-size converter using a nonperiodic segmented waveguide. Journal of Lightwave Technology, 1998,16 ( 9): 1680-1685.
[54]Pita J L, Aldaya I, Dainese P, et al. Design of a compact CMOS-compatible photonic antenna by topological optimization. Optics Express, 2018,26( 3 ) : 2435-2442.
[55]Burger M, Osher S J. A survey in mathematics for industry a survey on level set methods for inverse problems and optimal design. European Journal of Applied Mathematics, 2005, 16 (2) : 263-301.
[56]Vercruysse D, Sapra N V Su L, et al. Analytical level set fabrication constraints for inverse design. Sci. Rep., 2019, 9 ( 1 ): 8999.
[57]Sell D, Yang J J, Doshay S, et al. Large-angle, multifunctional metagratings based on feefom multimode geometries. Nano Lett., 2017,17 ( 6 ) : 3752-3757.
[58]Gabr A M, Featherston C, Zhang C, et al. Design and optimization of optical passive elements using artificial neural networks. J. Opt. Soc. Am. B, 2019,36(4): 999-1007.
[59]Tahersima M H, Kojima K, Koike-Akino T, et al. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep., 2019,9 ( 1 ) : 1368.
[60]Mahmud-Ul-Hasan M, Pieter N, Vbs R, et al. Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection. ACS Photonics, 2017,4 ( 3 ): 495-500.
[61]Diekmann R, Helle O I, ?ie C I, et al. Chip-based wide field-of^view nanoscopy. Nat. Photonics, 2017, 11(5): 322-328.
[62]Peyskens F, Wuytens P, Raza A, et al. Waveguide excitation and collection of surface- enhanced raman scattering from a single plasmonic antenna. Nanophotonics, 2018,7 ( 7 ): 1299-1306.
[63]Janata J, Moss S D. Chemically sensitive field-effect transistors. Biomed. Eng. (NY), 1976,11(7): 241-245.
[64]Caras S, Janata J. Field effect transistor sensitive to penicillin. Anal. Chem., 1980,52 ( 12): 1935-1937.
[65]Pickup J C, Hussain F, Evans N D, et al. Fluorescence-based glucose sensors. Biosensors and Bioelectronics, 2005, 20 ( 12 ) : 2555-2565.
[66]Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001,293 (5533 ) : 1289-1292.
[67]Koehne J, Chen H, Li J, et al. Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology, 2003,14 ( 12): 1239-1245.
[68]Giil O, Pugliese K, Choi Y, et al. Single molecule bioelectronics and their application to amplification-free measurement of DNA lengths. Biosensors, 2016, 6 (3 ) : 29.
[69]Ren R, Zhang Y J, Nadappuram B P, et al. Nanopore extended field-effect transistor for selective single-molecule biosensing. Nat. Commun., 2017, 8 ( 1 ): 586.
[70]Macchia E, Manoli K, Holzer, et al. Single-molecule detection with a millimetre-sized transistor. Nat. Commun., 2018,9 ( 1 ) : 3223.
[71]Patolsky F, Timko B Yu G H, et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science, 2006,313 (5790) : 1100- 1104.
[72]Qing Q, Pal S K, Tian B Z, et al. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci., 2010,107 (5 ) : 1882-1887.
[73]Pennisi E. Semiconductors inspire new sequencing technologies. Science, 2010, 327( 5970 ): 1190-1190.
[74]Goodwin S, McPherson J D, McCombie W R. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 2016,17 (6) : 333-351.
[75]Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nature Biotechnology, 2016.,34 (5 ) : 518-524.
[76]Steinbock L J, Radenovic A. The emergence of nanopores in next-generation sequencing. Nanotechnology, 2015,26 (7) : 074003.
[77]Wang S Y, Zhao Z Y, Haque F Z, et al. Engineering of protein nanopores for sequencing, chemical or protein sensing and disease diagnosis. Current Opinion in Biotechnology, 2018,51:80-89.
[78]Huang G, Vbet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat. Commun., 2019, 10 ( 1 ) : 835.
[79]Lieberman K R, Cherf G M, Doody M J, et al. Processive replication of single DNA molecules in a nanopore catalyzed by Phi29 DNA polymerase. Journal of the American
Chemical Society, 2010,132(50): 17961-17972.
[80]Cherf G M, Lieberman K R, Rashid H, et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nature Biotechnology, 2012, 30 (4) : 344-348.
[81]Manrao E A, Derrington IM, Laszlo A H, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and Phi29 DNA polymerase. Nature Biotechnology, 2012,30 (4) : 349-353.
[82]Laszlo A H, Derrington I M, Ross B C, et al. Decoding long nanopore sequencing reads of natural DNA. Nature Biotechnology, 2014, 32 (8 ) : 829-833.
[83]Laszlo A H, Derrington IM, Brinkerhoff H, et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethyIcytosine with nanopore MspA. Proc. Natl. Acad. Sci., 2013,110 (47): 18904-18909.
[84]Wescoe Z L, Schreiber J, Akeson M. Nanopores discriminate among five C5-cytosine variants in DNA. Journal of the American Chemical Society, 2014,136 (47 ) : 16582- 16587.
[85]Loman N J, Watson M. Successful test launch for nanopore sequencing. Nature Methods, 2015,12(4): 303-304.
[86]Loman N J, Quick J, Simpson J T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods, 2015,12 ( 8 ) : 733-735.
[87]Jain M, Fiddes I T, Miga K H, et al. Improved data analysis fbr the MinlON nanopore sequencer. Nat. Methods, 2015,12(4 ) : 351-356.
[88]Lu H Y, Giordano F, Ning Z M. Oxford nanopore MinlON sequencing and genome assembly. Genomics, Proteomics and Bioinfbrmatics, 2016,14 ( 5 ) : 265-279.
[89]Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis. Nature Nanotechnology, 2011,6 ( 10) : 615-624.
[90]Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing. Nature Biotechnology, 2008,26 ( 10): 1146-1153.
[91]Di Ventra M, Taniguchi M. Decoding DNA, RNA and peptides with quantum tunnelling. Nature Nanotechnology, 2016, 11 ( 2 ) : 117-126.
[92]Xie P, Xiong Q H, Fang X, et al. Local electrical potential detection of DNA by nanowire- nanopore Sensors. Nature Nanotechnology, 2012,7 (2 ) : 119-125.
[93]McNally B, Singer A, Yu Z L, et al. Optical recognition of converted DNA nucleotides fbr single-molecule DNA sequencing using nanopore arrays. Nano Letter, 2010, 10 (6 ) : 2237- 2244.
[94]Anderson B N, Assad, O N, Gilboa T, et al. Probing solid-state nanopores with light fbr the detection of unlabeled analytes. ACS Nano, 2014,8 ( 11 ) : 11836-11845.
[95]Ivankin A, Henley R Y, Larkin J, et al. Label-Free optical detection of biomolecular translocation through nanopore arrays. Biophysical Journal, 2015,108 (2) : 331A.
[96]Chen C, Li Y, Kerman S, et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nature Communications, 2018, 9 ( 1 ): 1733.
[97]Feng J D, Liu K, Bulushev R D, et al. Identification of single nucleotides in MoS2 nanopores. Nature Nanotechnology, 2015, 10 ( 12) : 1070-1076.
[98]Lindsay S. The promises and challenges of solid-state sequencing. Nature Nanotechnology 2016,11(2): 109-111.
[99]Hall A R, Scott A, Rotem D, et al. Hybrid pore formation by directed insertion of a-haemolysin into solid-state nanopores. Nature Nanotechnology 2010, 5 ( 12) : 874-877.
[100]Kneipp K, Kneipp H, Kartha V B, et al. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering ( SERS) . Physical Review E, 1998, 57 (6): R6281-R6284.
[101]Chen C, Hutchison J A, van Dorpe P, et al. Focusing plasmons in nanoslits for surface- enhanced Raman scattering. Small, 2009,5 ( 24 ) : 2876-2882.
[102]Chen C, Ye J, Li Y, et al. Detection of DNA bases and oligonucleotides in plasmonic nanoslits using fluidic SERS. IEEE Journal of Selected Topics in Quantum Electronic, 2013, 19(3): 4600707.
[103]Chen C, Hutchison J A, Clemente F, et al. Direct evidence of high spatial localization of hot spots in surface-enhanced Raman scattering. Angewandte Chemie-Intemational Edition, 2009,48(52): 9932-9935.
暂无
新书推荐