logo
地球科学学科前言丛书·深部地下生物圈

地球科学学科前言丛书·深部地下生物圈

深部地下生物圈(简称深地生物圈)是指陆地及海底表面以下,不以阳光为能量来源的生物圈,主要由微生物组成,俗称黑暗世界生物圈。深地生物圈代表着地球早期极端环境下的生命,对于生命起源及火星等外星体的生命探索有重大意义。它们生物量巨大,种类繁多,代谢途径多样,对油气及矿产资源 的形成、元素地球化学循环与气候变化起着重要的调控作用;同时它们也是潜在的微生物资源,有望在医学、环保和能源资源等领域发挥重要作用。因此对深地生物圈的研究将大大提高我们对地球生命-环境-资源相互作用的认识,是地球系统科学不可缺少的组成部分,也是实现向地球深部进军的“深地”科技战略的重要内容之一。
本书预览点击购买
地球科学学科前沿丛书编委会
主  编:傅伯杰
副主编(以姓氏笔画为序):杨元喜 周成虎 周忠和郭正堂 焦念志
编  委(以姓氏笔画为序):王成善 王会军 朱日祥 刘丛强 吴立新 陈 骏金之钧 郑永飞 郝 芳郭华东 龚健雅 崔 鹏穆 穆
地球科学学科前沿丛书深部地下生物圈项目组
组  长:殷鸿福
成  员(以姓氏拼音为序):邓子新 董海良 方家松 黄 力 焦念志 刘双江 刘 羽 鲁安怀 陆现彩 牟伯中潘永信 邵宗泽 石 良 束文圣 王成善 王风平 王红梅 谢树成 徐 恒 张传伦 张玉忠 赵国屏 郑承纲 钟 扬
秘  书:龚剑明 蒋宏忱
工 作 组
组  长:董海良
成  员(以姓氏拼音为序):方家松 黄 力 林 巍 刘翠艳 鲁安怀 陆现彩 牟伯中 潘永信 邵宗泽 石 良 束文圣 唐春安 王风平 王红梅 谢树成 徐 绯 徐 恒 殷鸿福 张传伦 张更新 张玉忠
秘  书:蒋宏忱

  深部地下生物圈(简称深地生物圈)是指陆地及海底表面以下,不以阳光为能量来源的生物圈,主要由微生物组成,俗称黑暗世界生物圈。深地生物圈代表着地球早期极端环境下的生命,对于生命起源及火星等外星体的生命探索有重大意义。它们生物量巨大,种类繁多,代谢途径多样,对油气及矿产资源的形成、元素地球化学循环与气候变化起着重要的调控作用;同时它们也是潜在的微生物资源,有望在医学、环保和能源资源等领域发挥重要作用。因此对深地生物圈的研究将大大提高我们对地球生命-环境-资源相互作用的认识, 是地球系统科学不可缺少的组成部分,也是实现向地球深部进军的“深地”科技战略的重要内容之一。

  但是,目前人们对深地生物圈知之甚少,对其生物量的时空分布、多样性(多数是不可培养的)及功能的了解还十分有限,对深地生命的生存方式、繁殖和进化,以及能量代谢和物质循环等根本问题还知之甚微。为了分析当前深地生物圈的发展特征、动向和趋势,提炼深地生物圈的重大科学问题及符合我国发展需求的战略研究方向,经中国科学院地学部批准,“深部地下生物圈发展战略研究”项目于 2016 年 12 月正式立项。殷鸿福院士担任该项目的负责人。为了推进战略研究工作的进行,成立了项目组和工作组(编写组),后者由董海良教授任组长;各组的成员见本书编委会。
  两年来,本书项目组在北京、武汉和上海等地组织了5 次项目组会议、3 次国际学术研讨会(The 4th International Conference of Geobiology,2017.6.15~2017.6.18,武汉; International Workshop of Geomicrobiome:Subsurface Microbial Composition and Function and Microbial Interactions with Subsurface Environment, 2017.10.13~2017.10.15,武汉;“地下深部生物圈”国际学术研讨会,2018.3.17~2018.3.18,北京)及 1 次以项目组成员为核心的国内学术讨论会(第七届地质微生物学学术研讨会,2018.6.9~ 2018.6.10,上海)。汪品先、殷鸿福、赵国屏、邓子新、谢和平、周忠和、沈树忠和潘永信等院士先后参加了这些会议的讨论,他们为推进我国深地生物圈研究特别是本书一些关键内容的撰写提出了许多建设性意见,在很大程度上提高了本书的前瞻性。在此期间,由项目组专家(董海良、谢树成和王风平)推动并以项目组成员为主体,先后成立了中国微生物学会地质微生物分会(2018 年6 月)、中国古生物学会地球生物学分会(2018 年 9 月)和中国深部地下生物圈观测研究委员会(2018 年 10 月)。国内深地生物圈研究蓬勃发展。2018 年6 月召开的中国科学院第十九次院士大会地学部工作报告对本项目进展作了肯定。
  本书是在项目执行过程中,在各种讨论会的基础上,组织地球生物学相关领域的专家编写而成。地球科学和生命科学两个领域的专家都参与了编写。全书共九章,第一章由石良和董海良编写;第二章由董海良编写;第三章由邵宗泽、方家松、潘永信、束文圣、王风平、徐恒、徐绯、林巍、卢春华、董海良、严成增、吴世军、纪润佳、唐旭、任伟、张弛、田军、翦知湣、拓守廷、张维佳和周扬凯编写;第四章由方家松、黄力、刘翠艳、张传伦、刘芳华和连宾编写;第五章由王红梅、牟伯中、张更新、刘翠艳和何环编写;第六章由王风平、邵宗泽、张玉忠、方家松、牛明杨、陈云如和杨娜编写;第七章由陆现彩、石良、谢树成、鲁安怀、赵良和李子波编写;第八章由黄力、牟伯中、石良、邵宗泽、赵良、李子波和董海良编写;第九章由殷鸿福和董海良编写。全书由董海良、殷鸿福和蒋宏忱整体修改和统稿。
  深地生物圈涉及地学(地质、地球化学、地球物理和资源环境)、生物学(特别是微生物学)及技术和信息科学,是一门多学科交叉的研究。本书不仅从研究现状与展望、基本概念和特征、能源与循环、开发与利用及平台与技术等多角度、全方位介绍深地生物圈研究,而且力图从中提炼出中国深地生物圈研究的中期和近期目标及主要科学和技术问题,从而明确今后突破的方向。项目组基本上囊括了国内深地生物圈研究的知名专家,其两年来的活动推动了国内深地生物圈研究的学术交流。本项目结束后,由中国科学院地学部与国家自然科学基金委员会联合支持的“极端地质环境微生物”项目将接续启动。新项目将极端环境微生物研究加深,并扩展至地史和地表极端地质环境微生物及外星体生命。期待地质微生物的研究在国家自然科学基金委员会与中国科学院地学部及生命科学和医学部的联合支持下,有一个迅猛发展的未来,为我国科技和社会发展做出更大的贡献。
  本项目的立项与各项活动得到中国科学院地学部常务委员会、战略研究项目组及学部工作局的支持和指导;项目执行过程得到许多院士、专家及同行的大力支持和帮助;从 2016 年年底立项开始,项目组成员兢兢业业,克服时间仓促、任务繁重和经费到位不及时等多重困难,有声有色地组织了多项活动,按时完成了本报告。在此谨向他们的大力支持和辛勤劳动致以衷心的敬意。深地生物圈是一个基本上未经开发的科学宝藏;希望本书的出版能引起高校师生、研究人员和社会公众的兴趣,并共同推动这一学科发展,使之发扬光大。本书涉及一个全新领域,难免挂一漏万,不当之处,敬请批评指正。

 

  殷鸿福
  2018 年 12 月 25 日
丛书序
前 言
摘要 
Abstract 
第一章 深地生物圈基本概念和特征
第一节 定义
第二节 地质环境及物理化学因素对深地生物圈的影响
第三节 能量及转换
第四节 物种多样性及功能多样性
本章参考文献
第二章 深地生物圈研究现状及研究的必要性和紧迫性
第一节 深地微生物研究的国内外现状
第二节 我国提出深地生物圈研究的意义、必要性和紧迫性
本章参考文献
第三章 深地生物圈研究的平台建设与装备
第一节 深地钻井与掘进技术
第二节 深地微生物样品的保真采样
第三节 深地微生物原位观测和实验系统
第四节 深地微生物的实验室模拟培养
第五节 单细胞微区分析及其他分析技术
第六节 组学和生物信息技术平台的建设
第七节 生物地球物理学实验观测系统
本章参考文献
第四章 深地生物圈的微生物生物量、活性及微生物的相互作用
第一节 细菌和古菌
第二节 内生孢子
第三节 病毒
第四节 真菌
第五节 微生物的相互作用
第六节 展望
本章参考文献 127
第五章 陆地典型深地生物圈
第一节 油藏微生物
第二节 煤层微生物
第三节 大陆深地基岩与流体中的微生物
第四节 陆地洞穴微生物
本章参考文献
第六章 海洋深地生物圈的典型生态环境
第一节 海洋沉积物生态系统
第二节 洋壳微生物
第三节 热液生态系统
第四节 冷泉生态系统
第五节 海洋深地生物圈研究展望
本章参考文献
第七章 深地生物圈的能量来源与物质循环
第一节 深地微生物介导的元素生物地球化学过程与循环
第二节 深地微生物 - 矿物相互作用
第三节 深地微生物的成矿成藏作用
本章参考文献
第八章 深地微生物资源的开发与应用
第一节 深地微生物在生物技术中的应用
第二节 深地微生物对页岩气开采的影响
第三节 深地微生物与油气开采
第四节 深地微生物与 CO2 的地质封存 
第五节 深地微生物与核废料的地质储存
第六节 深海极端环境微生物资源的开发应用
本章参考文献
第九章 展望与建议
第一节 创建支撑国家深地战略的深地生物圈科学技术
第二节 政策建议和资助机制
本章参考文献
关键词索引
刘志恒 . 2002. 现代微生物学 . 北京:科学出版社 .
邱轩,石良 . 2017. 微生物和含铁矿物之间的电子交换 . 化学学报,75:583-593.
Anantharaman K, Brown CT,  Hug LA, et al. 2016. Thousands of microbial genomes shed light    on interconnected biogeochemical processes in an aquifer system. Nature Communications, 7: 13219.
Arshad A, Speth DR, de Graaf RM, et al. 2015. A metagenomics-based metabolic model of nitrate- dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Frontier in Microbiology, 6(273): 1423.
Aullo T, Ranchou-Peyruse A, Ollivier B, et al. 2013. Desulfotomaculum spp. and related gram-
positive sulfate-reducing bacteria in deep subsurface environments. Frontier in Microbiology, 4: 362.
Bagnoud A, Chourey K, Hettich RL, et al. 2016. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. Nature Communications, 7: 12770.
Baker BJ, Saw JH, Lind AE, et al. 2016. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nature Microbiology, 1(3): 16002.
Bale SJ, Goodman K, Rochelle PA, et al. 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. International Journal of Systematic Bacteriology, 47(2): 515-521.
Barnes SP, Bradbrook SD, Cragg BA, et al. 1998. Isolation of sulfate-reducing bacteria from deep
sediment layers of the Paci?c Ocean. Geomicrobiological Journal, 15(2): 67-83.
Bartlett DH. 1999. Microbial adaptations to the psychrosphere/piezosphere. Journal of Molecular Microbiology and Biotechnology, 1(1): 93-100.
Bartlett DH. 2002. Pressure e?ects on in vivo microbial processes. Biochimica et Biophysica Acta,
1595(1): 367-381.
Beal EJ, House CH, Orphan VJ. 2009. Manganese- and iron-dependent marine methane oxidation.
Science, 325(5937): 184-187.
Beller HR, Zhou P, Legler TC, et al. 2013. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans. Frontier in Microbiology, 4: 249.
 
Berndt ME, Allen DE, Seyfried AE. 1996. Redution of CO2 during serpentinization of olivine at 300 500 bar. Geology, 24: 351-354.
Blair CC, D’Hondt S, Spivack AJ, et al. 2007. Radiolytic hydrogen and microbial respiration in
subsurface sediments. Astrobiology, 7(6): 951-970.
Blochl E, Rachel R, Burggraf S, et al. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees . Extremophiles, 1(1): 14-21.
Bonis BM, Gralnick JA. 2015. Marinobacter subterrani, a genetically tractable neutrophilic Fe(II)-
oxidizing strain isolated from the Soudan Iron Mine. Frontier in Microbiology, 6: 719.
Borgonie G, Garcia-Moyano A, Litthauer D, et al. 2011. Nematoda from the terrestrial deep subsurface of South Africa. Nature, 474(7349): 79-82.
Borgonie G, Linage-Alvarez B, Ojo AO, et al. 2015. Eukaryotic opportunists dominate the deep- subsurface biosphere in South Africa. Nature Communications, 6: 8952.
Braun S, Mhatre SS, Jaussi M, et al. 2017. Microbial turnover times in the deep seabed studied by amino acid racemization modelling. Scientifc Reports, 7(1): 5680.
Braun S, Morono Y, Littmann S, et al. 2016. Size and carbon content of sub-sea?oor cicrobial cells
at Landsort Deep, Baltic Sea. Frontier in Microbiology, 7: 1375.
Chapelle FH, O’Neill K, Bradley PM, et al. 2002. A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 415(6869): 312-315.
Chivian D, Brodie EL, Alm EJ, et al. 2008. Environmental genomics reveals a single-species ecosystem deep within Earth. Science, 322(5899): 275-278.
Christner BC, Priscu JC, Achberger AM, et al. 2014. A microbial ecosystem beneath the West Antarctic ice sheet. Nature, 514(7514): 310-313.
Colman DR, Poudel S, Stamps BW, et al. 2017. The deep, hot biosphere: twenty-five years of retrospection. Proceedings of the National Academy of Sciences of the United States of America, 114(27): 6895-6903.
Colwell FS, Matsumoto R, Reed D. 2004. A review of the gas hydrates, geology, and biology of the Nankai Trough. Chemical Geology, 205: 391-404.
Cowen JP, Giovannoni SJ, Kenig F, et al. 2003. Fluids from aging ocean crust that support microbial life. Science, 299(5603): 120-123.
D’Hondt S, Rutherford S, Spivack AJ. 2002. Metabolic activity of subsurface life in deep-sea
sediments. Science, 295(5562): 2067-2070.
 
Delong EF, Franks DG, Yayanos AA. 1997. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Applied and Environmental Microbiology, 63(5): 2105-2108.
Drake H, Ivarsson M, Bengtson S, et al. 2017. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nature Communications, 8(1): 55.
Edwards KJ, Bach W, McCollom TM. 2005. Geomicrobiology in oceanography: microbe-mineral
interactions at and below the sea?oor. Trends in Microbiology, 13: 449-456.
Edwards KJ, Becker K, Colwell F. 2012. The deep, dark energy biosphere: intraterrestrial life on earch. Annual Review of Earth and Planetary Sciences, 40(1): 551-568.
Ettwig KF, Butler MK, Le Paslier D, et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288): 543-548.
Ettwig KF, Zhu B, Speth D, et al. 2016. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences of the United States of America, 113(45): 12792-12796.
Fisher AT. 2005. Marine hydrogeology: recent accomplishments and future opportunities. Hydrogeology Journal, 13(1): 69-97.
Fredrickson JK, Fletcher M. 2001. Subsurface Microbiology and Biogeochemistry. New York: Wiley-Liss.
Fredrickson JK, McKinley JP, Bjornstad BN, et al. 1997. Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiology Journal, 14: 183-202.
Freund F, Dickinson JT, Cash M. 2002. Hydrogen in rocks: an energy source for deep microbial communities. Astrobiology, 2(1): 83-92.
Fry JC, Parkes RJ, Cragg BA, et al. 2008. Prokaryotic biodiversity and activity in the deep
subsea?oor biosphere. FEMS Microbiology Ecology, 66(2): 181-196.
Gilichinsky D, Rivkina E, Shcherbakova V, et al. 2003. Supercooled water brines within permafrost - an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology, 3(2): 331-341.
Gold T. 1992. The Deep, Hot Biosphere. New York: Springer.
Hara K, Kakegawa T, Yamashiro K, et al. 2005. Analysis of the archaeal sub-sea?oor community at
Suiyo Seamount on the Izu-Bonin Arc. Advances in Space Research, 35: 1634-1642.
Haroon MF, Hu S, Shi Y, et al. 2013. Anaerobic oxidation of methane coupled to nitrate reduction
in a novel archaeal lineage. Nature, 500(7464): 567-570.
 
Haveman SA, Pedersen K, Ruotsalainen P. 1999. Distribution and metabolic diversity of microorganisms in deep igneous rock aquifers of Finland. Geomicrobiology Journal, 16(4): 277- 294.
He Y, Li M, Perumal V, et al. 2016. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nature Microbiology, 1(3): 16035.
Heim C. 2011. Terrestrial Deep Biosphere, in Encyclopedia of Geobiology. Netherlands: Springer.
Helz GR, Miller CV,  Chamock JM, et al. 1996. Mechanisms of molybdenum removal from the   sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60(19): 3631-3642.
Hernsdorf AW, Amano Y, Miyakawa K, et al. 2017. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. The ISME Journal, 11(8): 1915-1929.
Hirayama H, Takai K, Inagaki F, et al. 2005. Bacterial community shift along a subsurface
geothermal water stream in a Japanese gold mine. Extremophiles, 9(2): 169-184.
Huber JA, Johnson HP, Butterfield DA, et al. 2006. Microbial life in ridge flank crustal fluids. Environmental Microbiology, 8: 88-99.
Hug LA, Baker BJ, Anantharaman K, et al. 2016. A new view of the tree of life. Nature Microbiology, 1: 16048.
Ino K, Hernsdorf AW, Konno U, et al. 2018. Ecological and genomic profiling of anaerobic
methane-oxidizing archaea in a deep granitic environment. The ISME Journal, 12(1): 31-47.
Itavaara M, Nyyssonen M, Kapanen A, et al. 2011. Characterization of bacterial diversity to a  depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiology Ecology, 77(2): 295-309.
Johnson HP, Pruis MJ. 2003. Fluxes of ?uid and heat from the oceanic crustal reservoir. Earth and
Planetary Science Letter, 216(4): 565-574.
Jorgensen BB. 2011. Deep subsea?oor microbial cells on physiological standby. Proceedings of the
National Academy of Sciences of the United States of America, 108(45): 18193-18194.
Jungbluth SP, Grote J, Lin HT, et al. 2013. Microbial diversity within basement fluids of the
sediment-buried Juan de Fuca Ridge ?ank. The ISME Journal, 7(1): 161-172.
Jungbluth SP, Lin HT, Cowen JP, et al. 2014. Phylogenetic diversity of microorganisms in subseafloor crustal fluids from Holes 1025C and 1026B along the Juan de Fuca Ridge flank.
 
Frontier in Microbiology, 5(5): 119.
Kallmeyer J, Pockalny R, Adhikari RR, et al. 2012. Global distribution of microbial abundance and biomass in subsea?oor sediment. Proceedings of the National Academy of Sciences of the United States of America, 109(40): 16213-16216.
Kamann PJ, Ritzi RW, Dominic DF, et al. 2007. Porosity and permeability in sediment mixtures.
Ground Water, 45(4): 429-438.
Karl DM, Bird DF, Bjorkman K, et al. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science, 286(5447): 2144-2147.
Kietavainen R, Purkamo L. 2015. The origin, source, and cycling of methane in deep crystalline rock biosphere. Frontier in Microbiology, 6: 725.
Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: progress with an unknown process.
Annual Review of Microbiology, 63(1): 311-334.
Krumholz LR, McKinley JP, Ulrich FA, et al. 1997. Con?ned subsurface microbial communities in
Cretaceous rock. Nature, 386(6620): 64-66.
Labonte JM, Field EK, Lau M, et al. 2015. Single cell genomics indicates horizontal gene transfer
and viral infections in a deep subsurface ?rmicutes population. Frontier in Microbiology, 6: 349.
Lau MC, Kieft TL, Kuloyo O, et al. 2016. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitri?ers. Proceedings of the National Academy of Sciences of the United States of America, 113(49): E7927-E7936.
Laufer K, Roy H, Jorgensen BB, et al. 2016. Evidence for the existence of autotrophic nitrate- reducing Fe(II)-oxidizing bacteria in marine coastal sediment. Applied and Environmental Microbiology, 82(20): 6120-6131.
Lever MA. 2011. Acetogenesis in the energy-starved deep biosphere - a paradox? Frontier in
Microbiology, 2(2): 284.
Lever MA, Rouxel O, Alt JC, et al. 2013. Evidence for microbial carbon and sulfur cycling in deeply buried ridge ?ank basalt. Science, 339(6125): 1305-1308.
Levin L. 2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes//Gibson RN, Atkinson RJA, Gordon JDM. (eds). Oceanography and Marine Biology - An Annual Review. Boca Raton: CRC Press-Taylor & Francis Group.
Lin HT, Cowen JP, Olson EJ, et al. 2012a. Inorganic chemistry, gas compositions and dissolved organic carbon in ?uids from sedimented young basaltic crust on the Juan de Fuca Ridge ?anks. Geochimica et Cosmochimica Acta, 85: 213-227.
 
Lin LH, Hall J, Lippmann-Pipke J, et al. 2005. Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochemistry Geophysics Geosystems, 6: 1-13.
Lin LH, Wang PL, Rumble D, et al. 2006. Long-term sustainability of a high-energy, low-diversity crustal biome. Science, 314(5798): 479-482.
Lin XJ, Kennedy D, Peacock A, et al. 2012b. Distribution of microbial biomass and potential for anaerobic respiration in Hanford Site 300 area subsurface sediment. Applied and Environmental Microbiology, 78(3): 759-767.
Liu Y, Whitman WB. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences, 1125(1): 171-189.
Lollar BS, Frape SK, Weise SM, et al. 1993. Abiogenic methanogenesis in crystalline rocks. Geochimica et Cosmochimica Acta, 57(23-24): 5087-5097.
Lollar BS, Onstott TC, Lacrampe-Couloume G, et al. 2014. The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 516(7531): 379-382.
Lonsdale P. 1979. A deep-sea hydrothermal site on a strike-slip fault. Nature, 281(5732): 531-534.
Magnabosco C, Lin LH, Dong H, et al. 2018. The biomass and biodiversity of the continental subsurface. Nature Geoscience, 11(10): 707-717.
McCollom TM, Seewald JS. 2001. A reassessment of the potential for reduction of dissolved CO2  to hydrocarbons during serpentinization of olivine. Geochimica et Cosmochimica Acta, 65(21): 3769-3778.
McGenity TJ, Gemmell RT, Grant WD, et al. 2000. Origins of halophilic microorganisms in ancient salt deposits. Environmental Microbiology, 2(3): 243-250.
McGlynn SE, Chadwick GL, Kempes CP, et al. 2015. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 526(7574): 531-535.
McMahon S, Parnell J. 2014. Weighing the deep continental biosphere. FEMS Microbiology Ecology, 87(1): 113-120.
Momper L, Jungbluth SP, Lee MD, et al. 2017. Energy and carbon metabolisms in a deep terrestrial
subsurface ?uid microbial community. The ISME Journal, 11(10): 2319-2333.
Moore SJ, Sowa ST, Schuchardt C, et al. 2017. Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature, 543(7643): 78-82.
Morono Y, Terada T, Nishizawa M, et al. 2011. Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proceedings of the National Academy of Sciences of the United States of America, 108(45): 18295-18300.
 
Moser DP, Gihring TM, Brockman FJ, et al. 2005. Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Applied and Environmental Microbiology, 71(12): 8773- 8783.
Nealson KH. 1997. Sediment bacteria: who’s there, what are they doing, and what’s new?Annual
Review of Earth and Planetary Sciences, 25(1): 403-434.
Nunoura T, Takaki Y, Kakuta J, et al. 2011. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Research, 39(8): 3204-3223.
Orcutt BN, Bach W, Becker K, et al. 2011a. Colonization of subsurface microbial observatories deployed in young ocean crust. The ISME Journal, 5(4): 692-703.
Orcutt BN, Sylvan JB, Knab NJ, et al. 2011b. Microbial ecology of the dark ocean above, at, and
below the sea?oor. Microbiology and Molecular Biology Reviews, 75(2): 361-422.
Oren A. 2012. There must be an acetogen somewhere. Frontier in Microbiology, 3(3): 22.
Osburn MR, LaRowe DE, Momper LM, et al. 2014. Chemolithotrophy in the continental deep subsurface: sanford underground research facility(SURF), USA. Frontier in Microbiology, 5: 610.
Parkes RJ, A. CB, Wellsbury P.  2000. Recent studies on bacterial populations and processes in
subsea?oor sediments: a review. Hydrogeological Journal, 8(1): 11-28.
Parkes RJ, Cragg BA, Bale SJ, et al. 1994. Deep bacterial biosphere in paci?c ocean sediments.
Nature, 371(6496): 410-413.
Paull CK, Hecker B, Commeau R, et al. 1984. Biological communities at the Florida escarpment
resemble hydrothermal vent taxa. Science, 226(4677): 965-967.
Pedersen K. 1997. Microbial life in deep granitic rock. FEMS Microbiology Reviews, 20(3-4): 399- 414.
Pedersen K. 2000. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS
Microbiology Letters, 185(1): 9-16.
Pereira IA, Ramos AR, Grein F, et al. 2011. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Frontier in Microbiology, 2: 69.
Peters JW, Schut GJ, Boyd ES, et al. 2015. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochimica et Biophysica Acta, 1853(6): 1350-1369.
Reysenbach AL, Banta AB, Boone DR, et al. 2000. Microbial essentials at hydrothermal vents. Nature, 404(6780): 835.
 
Richardson DJ. 2000. Bacterial respiration: a flexible process for a changing environment.
Microbiology, 146(Pt 3): 551-571.
Roussel EG, Bonavita MA, Querellou J, et al. 2008. Extending the sub-sea-?oor biosphere. Science,
320(5879): 1046.
Roy H, Kallmeyer J, Adhikari RR, et al. 2012. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science, 336(6083): 922-925.
Russell MJ, Martin W. 2004. The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29(7): 358-363.
Sahl JW, Schmidt RH, Swanner ED, et al. 2008. Subsurface microbial diversity in deep-granitic- fracture water in Colorado. Applied and Environmental Microbiology, 74(1): 143-152.
Sarbu SM, Kane TC, Kinkle BK. 1996. A chemoautotrophically based cave ecosystem. Science, 272(5270): 1953-1955.
Scheller S, Yu H, Chadwick GL, et al. 2016. Arti?cial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 351(6274): 703-707.
Schreiber BC. 1986. Arid Shorelines and Evaporites, in Sedimentary Environments and Facies.
Blackwell Scienti?c Publications, U. K: Oxford.
Schrenk MO, Huber JA, Edwards KJ. 2010. Microbial province in the subsea?oor. Annual Reviews
of Marine Science, 2(2): 279-304.
Schubert BA, Lowenstein TK, Timofeeff MN, et al. 2009. How do prokaryotes survive in fluid
inclusions in halite for 30 k.y.? Geology, 37(12): 1059-1062.
Sherwood Lollar B, Voglesonger K, Lin LH, et al. 2007. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks-energy for deep subsurface life on earth and mars. Astrobiology, 7(6): 971-986.
Shi L, Dong H, Reguera G, et al. 2016. Extracellular electron transfer mechanisms between
microorganisms and minerals. Nature Reviews Microbiology, 14(10): 651-662.
Shi L, Squier TC, Zachara JM, et al. 2007. Respiration of metal(hydr)oxides by Shewanella and
Geobacter: a key role for multihaem c-type cytochromes. Molecular Microbiology, 65(1): 12-20.
 
Silver BJ, Raymond R, Sigman DM, et al. 2012. The origin of NO- and N
 
in deep subsurface
 
fracture water of South Africa. Chemical Geology, 294-295(294-295): 51-62.
Skennerton CT, Chourey K, Iyer R, et al. 2017. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio, 8(4): e00530-17.
 
Sleep NH, Meibom A, Fridriksson T, et al. 2004. H2-rich ?uids from serpentinization: geochemical and biotic implications. Proceedings of the National Academy of Sciences of the United States of America, 101(35): 12818-12823.
Stevens TO, McKinley JP. 1996. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 270(5235): 450-455.
Studier MH, Hayatsu R, Anders E. 1968. Origin of organic matter in early solar system—
I.Hydrocarbon. Geochimica et Cosmochimica Acta, 32(2): 175-190.
Stumm W, Morgan JJ. 1996. Aquatic Chemistry. 3rd ed. New York: John Wiley.
Takai K, Hirayama H, Sakihama Y, et al. 2002. Isolation and metabolic characteristics of previously uncultured members of the order aqui?cales in a subsurface gold mine. Applied and Environmental Microbiology, 68(6): 3046-3054.
Takai K, Komatsu T, Inagaki F, et al. 2001. Distribution of archaea in a black smoker chimney structure. Applied and Environmental Microbiology, 67(8): 3618-3629.
Takai K, Oida H, Suzuki Y, et al. 2004. Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Applied and Environmental Microbiology, 70(4): 2404-2413.
Takami H, Noguchi H, Takaki Y, et al. 2012. A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem. PLoS ONE, 7(1): e30559.
Telling J, Boyd ES, Bone N, et al. 2015. Rock communication as a source of hydrogen for subglacial ecosystems. Nature Communications, 8: 851-855.
Teske A, Sorensen KB. 2008. Uncultured archaea in deep marine subsurface sediments: have we
caught them all? The ISME Journal, 2(1): 3-18.
Timmers PH, Welte CU, Koehorst JJ, et al. 2017. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea, http://doi.org/10.1155/2017/1654237.
Trias R, Menez B, le Campion P, et al. 2017. High reactivity of deep biota under anthropogenic CO2 injection into basalt. Nature Communications, 8(1): 1063.
Tyler PA, Young CM. 2001. Reproduction and dispersal at vents and cold seeps. Journal of the Marine Biological Association of the United Kingdom, 79(2): 193-208.
Wegener G, Krukenberg V, Riedel D, et al. 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 526(7574): 587-590.
Wheat CG, McManus J, Mottl MJ, et al. 2003. Oceanic phosphorus imbalance: magnitude of the
mid-ocean ridge ?ank hydrothermal sink. Geophysical Research Letters, 30(17): 449-456.
 
Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 95(12): 6578-6583.
Wu X, Holmfeldt K, Hubalek V, et al. 2016. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. The ISME Journal, 10(5): 1192-1203.
Zhang X, Feng X, Wang F. 2016. Diversity and metabolic potentials of subsurface crustal microorganisms from the western ?ank of the mid-Atlantic ridge. Frontier in Microbiology, 7: 363.
暂无
新书推荐